

5G ZORRO
Grant Agreement 871533

H2020 Call identifier: H2020-ICT-2019-2

Topic: ICT-20-2019-2020 - 5G Long Term Evolution

D4.3: Final prototype of Zero Touch Service
Management with Security and Trust

Dissemination Level

 PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Intermediate version. Pending of EC revision. Do not cite

5GZORRO Grant Agreement No. 871533 Deliverable D4.3 – version v1.0

Page 2 of 82

Grant Agreement no:

871533

Project Acronym:

5GZORRO

Project title:

Zero-touch security and trust for ubiquitous
computing and connectivity in 5G networks

Lead Beneficiary:

ALB

Document version:

V1.0

Work package:

WP4 - Zero Touch Automation with Trust, Security and AI

Deliverable title:

D4.3: Final prototype of Zero Touch Service Management with Security and Trust

Start date of the project:

01/11/2019

(duration 30 months)

(extended to 36 months)

Contractual delivery date:

30/Jun/2022

Actual delivery date:

08/07/2022

Editor(s)

André Gomes (ALB)

Page 3 of 82

List of Contributors
Participant Short Name Contributor

Nextworks NXW Pietro G. Giardina, Juan Brenes, Michael De Angelis, Elena Bucchianeri,
Giacomo Bernini

i2CAT Foundation i2CAT Adriana Fernández-Fernández, Carlos Herranz Claveras, Javier Fernandez
Hidalgo, Muhammad Shuaib Siddiqui

Universidad de Murcia UMU José María Jorquera Valero, Pedro Miguel Sánchez Sánchez, Manuel Gil
Pérez, Gregorio Martínez Pérez

Atos Spain ATOS Guillermo Gómez Chavez

IBM Israel Science and Technology IBM David Breitgand, Kathrine Barabash

Altice Labs ALB André Gomes, Bruno Santos

Intracom ICOM Alberto Erspamer, Dimitrios Laskaratos, Vasileios Theodorou

Ubiwhere UW Filipa Martins, Pedro Teixeira

Fondazione Bruno Kessler FBK Rasoul Behravesh, Cristina Costa

List of Reviewers
Participant Short Name Contributor

Intracom ICOM Marinela Mertiri

Atos Spain ATOS Aurora Ramos

Nextworks NXW Giacomo Bernini

Fundacio i2CAT I2CAT Muhammad Shuaib Siddiqui

Change History
Version Date Partners Description/Comments

0.0 27 May 2022 ALB Initial version release

0.1 13 Jun 2022 IBM, ICOM, UMU, UW Contributions on sections 2 and 3

0.2 20 Jun 2022 UMU, UW Review of content provided in section 2

0.3 24 Jun 2022 NXW, ATOS, ALB, UMU, i2CAT, UW Contributions & review on sections 2, 3, 4 and 5

0.4 28 Jun 2022 ATOS, UW, ALB, FBK Contributions & review on sections 2, 4, 5 and 6

0.5 30 Jun 2022 ATOS, ICOM, ALB Internal Review

0.6 7 Jul 2022 NXW, ATOS, ALB, UMU, UW, IBM, ICOM, FBK Contributions & review on sections 2, 3, 4, 5 and 6

1.0 8 Jul 2022 ALB, NXW, i2CAT Fixed comments and suggestions for final version

Page 4 of 82

DISCLAIMER OF WARRANTIES
This document has been prepared by 5GZORRO project partners as an account of work carried out within the
framework of the contract no 871533.

Neither Project Coordinator, nor any signatory party of 5GZORRO Project Consortium Agreement, nor any
person acting on behalf of any of them:

▪ makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any

party's intellectual property, or

▪ that this document is suitable to any particular user's circumstance; or

▪ assumes responsibility for any damages or other liability whatsoever (including any consequential

damages, even if Project Coordinator or any representative of a signatory party of the 5GZORRO

Project Consortium Agreement, has been advised of the possibility of such damages) resulting from

your selection or use of this document or any information, apparatus, method, process, or similar

item disclosed in this document.

5GZORRO has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871533. The content of this deliverable does not reflect the official
opinion of the European Union. Responsibility for the information and views expressed in the deliverable lies
entirely with the author(s).

Page 5 of 82

Table of Contents
Executive Summary .. 9

1. Introduction ...10

1.1. Document outline ..10

2. Security and Trust Orchestration ...12

2.1. 5G-enabled Trust and Reputation Management Framework ...12
2.1.1. Main Functionalities ...13
2.1.2. Prototype implementation ..15
2.1.3. Functional tests ..15

2.2. Trusted Execution Environment Security Management ..16
2.2.1. Main Functionalities ...16
2.2.2. Prototype implementation ..17
2.2.3. Functional tests ..18

2.3. Security Analysis Service (SAS) ...20
2.3.1. Main Functionalities ...21
2.3.2. Prototype implementation ..22
2.3.3. Functional tests ..22

2.4. VPN-as-a-Service ..23
2.4.1. Main Functionalities ...23
2.4.2. Prototype implementation ..23
2.4.3. Functional tests ..24

3. Intelligent and Automated Slice & Service Management ...25

3.1. ISSM Workflow Manager (ISSM-WFM) ...26
3.1.1. Main Functionalities ...26
3.1.2. Prototype implementation ..28
3.1.3. Functional tests ..29

3.2. ISSM-MEC...29
3.2.1. Prototype Implementation ..30

3.3. ISSM Optimizer (ISSM-O) ...30
3.3.1. Main Functionalities ...30
3.3.2. Prototype implementation ..31

4. MANO and Slicing Enhancements..32

4.1. Any Resource Manager ..32
4.1.1. Main Functionalities ...33
4.1.2. Prototype implementation ..33
4.1.3. Functional Tests ...35

4.2. Network Slice and Service Orchestrator ..36
4.2.1. Main Functionalities ...37
4.2.2. Prototype implementation ..37
4.2.3. Functional tests ..40

4.3. Network Service Mesh Manager ...41
4.3.1. Main Functionalities ...41
4.3.2. Prototype Implementation ..43
4.3.3. Functional Tests ...44

4.4. E-Licensing Manager ...45

Page 6 of 82

4.4.1. Main functionalities ...45
4.4.2. Prototype implementation ..45
4.4.3. Functional tests ..47

5. Module integration for zero-touch service management prototype48

5.1. Integration scenario overview ...48

5.2. Zero-touch network slice orchestration ...49
5.2.1. Integration tests and results ..50

5.3. E-Licensing control ...54
5.3.1. Integration tests and results ..56

5.4. Data-driven actuation ..60
5.4.1. Integration tests and results ..62

6. Installation procedures ...66

6.1. Cross-domain profile ..66

6.2. Trader profile ...66

6.3. Components mapping ..67

7. Conclusions ..68

References ..69

8. Abbreviations and Definitions ...71

8.1. Abbreviations ...71

9. Appendix I – Trust Management Framework ...72

9.1. 5G-TRMF Information Model ...72

9.2. 5G-enabled Trust and Reputation Management Framework Equations ..75
9.2.1. General PeerTrust equation ...75
9.2.2. Feedback Credibility equation ...78
9.2.3. Transaction Context Factor equation ..78
9.2.4. Community Context Factor equation ..79
9.2.5. General reward and punishment equations ..79

Page 7 of 82

List of Tables
Table 2-1: 5G-TRMF functional tests ... 15
Table 2-2: Trusted execution environment security management functional tests 19
Table 2-3: Intra-domain functional tests ... 22
Table 2-4: VPNaaS functional tests .. 24
Table 3-1: ISSM-WFM functional tests .. 29
Table 4-1 : 5G-Catalogue Functional Tests .. 35
Table 4-2: OSM API Functional Tests ... 35
Table 4-3: Radio Controller API Functional Tests .. 35
Table 4-4: Slice Manager API Functional Tests .. 36
Table 4-5: Translator API Functional Tests .. 36
Table 4-6: Network Slice and Service Orchestrator functional tests ... 40
Table 4-7: Network Service Mesh Manager functional tests .. 44
Table 4-8: E-Licensing manager functional tests ... 47
Table 5-1: ISSM-NSSO functional test set .. 50
Table 5-2: MDA functional test set .. 50
Table 5-3: e-License Manager integration tests .. 56
Table 5-4: Intelligent SLA Breach Predictor functional test set ... 62
Table 6-1: Zero-touch service management components required per stakeholder role 67
Table 9-1: 5G-TRMF Instance Information Model ... 72
Table 9-2: Trustee Entity Information Model .. 73
Table 9-3: Trustor Entity Information Model .. 73

List of Figures
Figure 2-1: Security and Trust components .. 12
Figure 2-2: 5G-TRMF interactions with SRSD, Resource and Service Offer Catalogue and Data Lake 14
Figure 2-3: TEE Proof of concept diagram ... 18
Figure 2-4: TEE functional testing flow .. 19
Figure 2-5: Monitoring modules and LAS service running on the Intel SGX Based TEE 20
Figure 2-6: Security Analysis Service module architecture ... 21
Figure 3-1: ISSM interaction with the rest of the 5GZORRO platform components 25
Figure 3-2: ISSM-WFM Distributed Architecture... 28
Figure 3-3: Reference Implementation of ISSM-MEC Manager and MEC Cloud Native Platform with support

for slice deployment for fully kubernetized free5GC Core and UPF. ... 30
Figure 4-1: Mano and Slicing enhancements modules in 5GZORRO Platform .. 32
Figure 4-2: Gravitee API ... 34
Figure 4-3: Gravitee Gateway and the defined APIs and the wrapped components 34
Figure 4-4: rAPP API ... 34
Figure 4-5: Network Slice and Service Orchestrator interactions ... 37
Figure 4-6 : NSSO software architecture ... 38
Figure 4-7: NSSO OpenAPI specification.. 39
Figure 4-8: SM OpenAPI .. 40
Figure 4-9: Network Service Mesh Manager interactions ... 42
Figure 4-10: VPN Secure link across two domains .. 42
Figure 4-11: NSMM Software architecture ... 43
Figure 4-12: NSMM OpenAPI specification ... 44
Figure 4-13: eLM microservices and functional blocks ... 46

Page 8 of 82

Figure 5-1: High-level steps followed by the Teams for the integration scenario .. 49
Figure 5-2: Slice instantiation submission on the Consumer's Portal ... 51
Figure 5-3: 5G Slice submission info .. 51
Figure 5-4: Slice instantiation running ... 52
Figure 5-5: Slice instantiation complete .. 52
Figure 5-6: Creation of monitoring configuration ... 53
Figure 5-7: Requesting of configured metric and its value ... 53
Figure 5-8: Storage of data on the Data Lake .. 54
Figure 5-9: E-License configuration workflow ... 55
Figure 5-10: Pods of the e-License Manager ... 57
Figure 5-11: eLM restriction check success ... 57
Figure 5-12: Bundled offering registration on the eLM ... 58
Figure 5-13: eLM restriction check failure ... 59
Figure 5-14: e-License expiration in the portal ... 59
Figure 5-15: eLM action after expiration of license .. 59
Figure 5-16: SLA Breach prediction workflow ... 60
Figure 5-17: ISBP Architecture ... 61
Figure 5-18: ISBP containers .. 62
Figure 5-19: ISSM creates an SLA event and pushes it to integration fabric... 63
Figure 5-20: ISBP receives the new SLA event ... 63
Figure 5-21: ISBP gets monitoring data and generates predictions .. 63
Figure 5-22: ISBP predicts an SLA breach .. 64
Figure 5-23: ISSM gets the SLA event .. 65
Figure 9-1 : UML diagram of 5G-TRMF .. 72

Page 9 of 82

Executive Summary

This document reports on the final prototypes of the zero-touch slice and service management solutions,
including security and trust orchestration, that have been developed as part of the 5GZORRO platform. These
have been carried out in the context of the Work Package (WP) 4, and this document describes the essential
features of all the trusted and secure zero-touch slice and service management software components. The
implemented prototypes are aligned to the design guidelines reported in previous deliverables (i.e., D4.1 and
D4.4) and are the result of continuous development and integration efforts performed by multiple software
teams, taking also into account validation feedback collected from WP5 as part of the project use cases
integration and KPI assessment.

In summary, this document is organized to describe:

• The software components that have been implemented inside each one of the three WP4 functional
pillars: Security and Trust Orchestration, Intelligent and Automated (zero-touch) Slice and Service
Management, and MANO and slicing enhancements.

• The main functionalities and software prototype implementation details for each developed
component, including the results of functional tests to validate the integration of the various
components within the 5GZORRO platform.

• References to the major prototype components and the respective source code repositories hosted
in the 5GZORRO GitHub available at: https://github.com/5gzorro

• Results of validation tests, including functional tests for the various modules and integration tests,
to demonstrate the proper functionality of the involved components and their interrelation.

• A proposed approach for automated Installation instructions for the presented prototypes, with the
identification of deployment profiles and dependencies among the various required 5GZORRO
components and modules

https://github.com/5gzorro

Page 10 of 82

1. Introduction

5GZORRO has been tackling the issue of network services orchestration in a multi-party environment,
implementing a new state-of-art platform for distributed orchestration, security, and trust solutions. This
platform is capable of multi-domain/multi-stakeholder smart resource selection and trading, with greatly
reduced manual intervention (zero-touch automation) and increased secure end-to-end chains across
domains.

In order to achieve resource & service management automation, the zero-touch service management and
orchestration platform of 5GZORRO provides continuous data transformation, including a proactive scaling
mechanism, that adjusts the infrastructure’s capacity to host resources published in the marketplace,
allocating resources according to demand. For the usage of external resources in a trusted manner, the
platform relies on a Security & Trust framework that secures communications between third partied, at both
intra and inter-domain environments.

The set of software modules designed and developed in 5GZORRO, to achieve the aforementioned objective,
have been continuously integrated and developed, aiming to reflect the defined architecture of the 5GZORRO
platform that evolved up until the final stages of the project.

Building and evolving on top of what was reported in D4.2 [1] for the intermediate software prototypes of
the 5GZORRO zero-touch service and slice management functionalities, this document describes the final
prototypes resulting from the development work done to incorporate the security and trust framework
developed across WP4’s tasks 4.1, 4.2 and 4.3 into the 5GZORRO platform, giving support to zero touch
service management.

Specifically, this document presents the final release of software prototypes corresponding to the
consolidation of WP4 outcomes. These are maintained in the 5GZORRO GitHub organization available at:

https://github.com/5gzorro

and tagged as 5gzorro-full-1.0-pre-final. However, some adjustments can still be realized in the different
prototypes until the end of the project based on feedback received from the use case validation trials
performed in WP5. These will be directly reported in the software documentation material included in the
available repositories (and tagged as final).

1.1. Document outline

This document is structured in two main parts.

In the first part, the status of the modules is reported in terms of main functionalities, developments of the
prototypes, and functional tests.

Section 2 focuses on the modules that implement the concepts of security and trust into the 5GZORRO
platform, these being the 5G-enabled Trust and Reputation Management Framework (5G-TRMF), the Trusted
Execution Environment (TEE) Security Management, the Security Analysis Services (SAS), and the VPN-as-a-
Service.

Section 3 describes the automated management of secured cross-domain slices and services, which is
implemented by the Intelligent and Automated Slice & Service Management (ISSM) and its sub-modules.

Section 4 reports on the set of components that build the 5GZORRO orchestration stack of slices, and the
enhancements of the MANO stack in terms of resource management, orchestration, and licensing. These are
the Any Resource Manager (xRM), Network Slice and Service Orchestrator (NSSO), Network Service Mesh
Manager (NSMM), and the e-Licensing Manager.

https://github.com/5gzorro

Page 11 of 82

In the second part, which maps into Section 5, the final integration work is reported against generic scenarios
which will be then specialised in WP5 in the context of more specific use case validation scenarios. The
section is organised to cover three different integration scenarios: zero-touch network slice orchestration, E-
licensing control, and data-driven actuation.

Section 6 provides the instructions necessary to install the developed prototypes, including the mapping of

modules required according to the stakeholder role.

Section 7 presents some concluding remarks.

Some specific theoretical background at the base of the 5G-enabled Trust and Reputation Management

Framework implementation has been reported in the Appendix I as complement to the core prototype

description information presented in section 2.1. The content of this Appendix extends the information

already provided with D4.2 [1], with new information concerning community context factors, and general

rewards and penalty equations.

Page 12 of 82

2. Security and Trust Orchestration

The 5GZORRO Security and Trust layer introduces the security and trust functionalities required to ensure
the selection of trusted third parties, protect a tenant service or application running in a computing node,
and secure the communications between 5GZORRO components. In this vein, Security and Trust
Orchestration plays an important role not only for the correct 5GZORRO platform functioning but also for
bringing a high-level trustworthiness. Therefore, the Security and Trust layer can be interpreted as an enabler
both at intra-domain and inter-domain environments.

The 5GZORRO Security and Trust Orchestration sub-system is split into four modules:

• 5G-enabled Trust and Reputation Management Framework (5G-TRMF), which is responsible for
determining stakeholders’ trust score and establishing reliable relationships. The 5G-TRMF is in turn
interconnected with the Security Analysis Service (SAS) as well as other external components to the
Security and Trust layer such as the Data Lake, the Smart Resource and Service Discovery, etc.

• Trusted Execution Environment Security Management, which enables critical workloads in multi-
tenant and multi-stakeholder scenarios. In this case, the TEE is not directly interconnected with other
Security and Trust components, but it interacts with essential components such as SLA Monitoring,
Intelligent SLA Breach Predictor and Monitoring Data Aggregation.

• Security Analysis Service, which offers internal security services such as detecting and mitigating
feasible attacks and threats, being such information consumed by the 5G-TRMF to update trust
scores.

• Inter-domain Security module, which guarantees a secure end-to-end communication through an
on-demand VPN as a Service (VPNaaS). Besides, this module interacts with the Identity and
Permissions Management so as to verify the identity of another gateway. Note that the Identity and
Permissions Management component is described in D3.2 [49] since it is a cross-work package
module.

Figure 2-1: Security and Trust components

Figure 2-1 displays the modules that are part of the Security & Trust logical sub-system of 5GZORRO platform.

2.1. 5G-enabled Trust and Reputation Management Framework

5GZORRO ecosystem brings several novelties, for instance, enabling secure, flexible, and automated business
establishments that boost new compositions of resources and services in 5G networks by means of multi-

Security and Trust Functions

[Logical Sub-System]

TEE Security

Management

5G-enabled Trust and

Reputation

Management

Framework

Intra-Domain Communication Fabric

Multi-Domain Communication Fabric

Identity and

Permissions

Management

VPN-as-a-Service
Security Analisis

Service

interconnectedinterconnected

interconnected

Page 13 of 82

stakeholder combinations. 5GZORRO introduces the 5G-enabled Trust and Reputation Management
Framework (5G-TRMF) that is the module in charge of guaranteeing the establishment of a trustworthy end-
to-end chain across domains. Therefore, in a situation where a stakeholder needs to forecast trust levels of
multiple stakeholders in order to identify the most appropriate entity, the 5G-TRMF will provide the required
functionality to assess stakeholders’ reputation, and in consequence, to ensure a reliable selection based on
past experience and recommendations.

2.1.1. Main Functionalities

The scope of the 5G-TRMF is not only to evaluate stakeholders’ trust score but also to manage the whole
lifecycle of the trust computation process. The main functionalities of a trust lifecycle management are:

• Data collection process from available storage sources (Data Lake, Resource and Service Offer
Catalogue and a dedicated trust database);

• Assessment of trust information from own history and recommendations;

• Decision-making based on a trust score;

• Trust information storage for future interactions;

• Continuous evaluation of trust in an established relationship using security and SLA events.

Novel considerations related to the interactions of the 5G-TRMF with other 5GZORRO components have
emerged since the release of the related intermediate prototype in deliverables D4.2 [1]. Therefore, the prior
workflow has been readjusted to better describe the final interactions of the 5G-TRMF with other key
modules and the triggered actions. As it can be observed in Figure 2-2, the Smart Resource and Service
Discovery (SRSD) application module is the one in charge of launching the trust computation process for an
initial list of product offers pre-classified by the SRSD employing mechanisms such as imperative constraints
and considerations provided by the consumer. This capability is started through the requestTrustScore
method (ref. step 3 in Figure 2-2).

Page 14 of 82

Figure 2-2: 5G-TRMF interactions with SRSD, Resource and Service Offer Catalogue and Data Lake

Once the 5G-TRMF receives a set of offers to be evaluated, it will launch the gatherInformation method so

as to retrieve trust information from three main sources (ref. step 4 in Figure 2-2). Firstly, the

gatherInformation method collects information with respect to the status and number of resource and

service offers published in the Catalogue. Secondly, it also gathers trust information from its dedicated trust

database which contains historical information from previous trust service chains. Lastly, the method gets

recommendations from the previous interactions published in the Data Lake by other 5GZORRO Platform

Participants (ref. step 7 in Figure 2-2). Thus, this information will be utilised to perform a final trust score that

will be forwarded to the SRSD.

After receiving all trust assessments from the list of offers, the SRSD application will generate a ranked list of
offers based on certain intent priorities as well as the trust scores. Then, such a list of offers will be sent to
the Intelligent Slice and Service Manager (ISSM). After that, the ISSM Optimizer (ISSM-O) will determine a
cost-efficient allocation of resources and services available at the marketplace to implement the required
slice or service. Hence, the ISSM-O should notify the final list of highest ranked product ordering to the ISSM
Workflow Manager (ISSM-WFM). At this point, the ISSM-WFM will carry out multiple tasks, with the aid of
other modules like the Network Slice and Service Orchestrator (NSSO), in order to configure and instantiate
a slice. Once the slice is instantiated and active, the ISSM-WFM will notify the final decision to the 5G-TRMF
(ref. step 15 in Figure 2-2). As a final step, the 5G-TRMF will launch a continuous data collection for the
selected slice or service in order to start the entire trust lifecycle and update the trust score, in the case of
some defined events or triggers are activated. As steps 16 and 17 depict, the Security Analysis Service (SAS)
and the Intelligent SLA Monitoring and Breach Predictor (ISBP) are the two principal information sources to
be considered. In this regard, the 5G-TRMF will launch threats in order to monitor in parallel different set of
events.

Page 15 of 82

In relation to the aforementioned workflow updates, it has been required to review the previous 5G-TRMF
Information Model presented in deliverables D4.1 [53] and D4.2 [1]. In particular, the updated information
model contemplates new trust parameters in order to compute and update the trust score of services and
resource providers and their product offers.

More specifically, to correctly manage the new trust parameters defined in the 5G-TRMF Information Model,
multiple equations have been defined which are used to compute the 5GZORRO stakeholder trust score (see
Appendix I). In particular, the 5G-TRMF leverages the well-known reputation model called PeerTrust [2] which
is envisaged as a basis from which to design equations in line with the 5GZORRO ecosystem. Thus, these
equations will be employed by one of the modules that make up the architecture of the 5G-TRMF presented
in deliverables D4.1 [53] and D4.4 [19], the Trust Computation module. In this regard, all trust parameters,
as well as equations contemplated for calculating trust scores, can be found in Appendix I. Additionally, new
functionalities are described in Appendix I (sections 9.2.4 and 9.2.5) where a resilience mechanism against
trust attack and two novel reward and punishment mechanisms have been respectively developed.

2.1.2. Prototype implementation

The 5G-TRMF designed in deliverables D4.1 [53] and D4.4 [19] included various modules: Information
Gathering and Sharing, Trust Computation, Trust Storage, and Continuous Update. This final prototype covers,
in terms of modules and interfaces, the whole 5G-TRMF.

Regarding the communication paradigm employed by the 5G-TRMF, it follows both a request/response
paradigm and a publish/subscribe paradigm. The former is utilised by the 5GZORRO modules that need to
launch the trust lifecycle, for instance, the SRSD, to retrieve historical trust information, recommendations
as well as to send trust information about a stakeholder. The latter is used by the 5G-TRMF itself in order to,
process new events or triggers. In the case of publish/subscribe communication paradigm, such a framework
will utilise the common Kafka instance which will be shared with other 5GZORRO modules (intra- and cross-
domain communication fabric).

The definition of the 5G-TRMF interfaces is available at the following GitHub page:

https://github.com/5GZORRO/5G-TRMF.

Concerning the virtualization technology used for the software package, this module is released as a Docker
container to facilitate orchestration and delivery together with other 5GZORRO modules.

2.1.3. Functional tests

The following table describes several functional features which allow checking the proper behaviour of
different modules and activities carried out by the 5G-TRMF. It should be noted that all the tests described
in Table 2-1 are related both to the integration of the 5G-TRMF with other 5GZORRO modules and internal
to the 5G-TRMF. For instance, the Request Trust Score test involves the SRSD which interacts with the 5G-
TRMF to assess Product Offers (POs), the Start Data Collection test. Therefore, Table 2-1 covers the
interaction between SRSD and 5G-TRMF to assess Product Offers (Pos) via the Request Trust Score test, the
information retrieval by the 5G-TRMF (the Start Data Collection test), the information storage in the Data
Lake and private database (the Storage Trust Information test) or the updating of trust through the SAS and
ISBP components (the Trigger Security Events and Trigger Breach Predictions tests), among others.

Table 2-1: 5G-TRMF functional tests

Name Description
Passed

(Yes/No/Partially)

Trust Parameters
Verify whether the dictionary received as parameter complies with
the format of the described trust information model

Yes

Start data collection
Verify that the 5G-TRMF is able to retrieve information from Data
Lake, Catalogue, and its dedicated database

Yes

https://github.com/5GZORRO/5G-TRMF

Page 16 of 82

Request Trust Score
Verify that the 5G-TRMF is able to process a list of Product Offers
(Pos) sent by the SRSD and return back a list of trust scores.

Yes

Compute Trust Score
Verify that the 5G-TRMF can perform all steps necessary to assess
the Pos.

Yes

Storage Trust
Information

Verify that the 5G-TRMF can properly interact with its dedicated
database and the Kafka topic.

Yes

Notify Final Selection
Verify that the 5G-TRMF is able to start the continuous update
process about a PO previously analysed.

Yes

Trigger security
events

Verify that the 5G-TRMF is capable of creating a given threat to
contact with the SAS and manage the received security network
events.

Yes

Trigger Breach
Predictions

Verify that the 5G-TRMF is capable of creating a given threat to
contact with the ISBP and manage the messages related to breach
predictions published in the Kafka Topic.

Yes

2.2. Trusted Execution Environment Security Management

The Trusted Execution Environment Security Management module focuses on the development of
functionalities that allow 5GZORRO to protect their tenant service or application running in a computing node
against a stakeholder with malicious intentions.

For that purpose, this module integrates commercial Trusted Execution Environments (TEEs) for the software
components execution to enhance the security and trust of the software. In this regard, a hardware-based
TEE approach has been adopted, by making use of Intel’s SGX (Software Guard Extensions).

As previously mentioned in D4.1 [53] and D.4.2 [1], Secure Linux Containers (SCONE) [3], a framework built
on top of Intel’s TEE solution, was the chosen technology to abstract specific implementation details of the
secure enclave and to allow the deployment of critical services on SGX-enabled [4] nodes.

2.2.1. Main Functionalities

With the architecture definition of the 5GZORRO platform and integration and development of its
components, the overall design and consequent functionalities of the TEE module have undergone some
relevant changes. One core aspect was the integration of SCONE framework modules with the orchestration
services, allowing the deployment of critical services on SGX-enabled nodes present in the marketplace.

Since 5GZORRO project mainly expects to support the integration of zero trust hardware platforms (TEE) as
a root of trust for the monitoring of information and the establishment of end-to-end secure communications
enabling critical workloads to go across different stakeholders, it was decided to concentrate efforts in
achieving this specific goal.

This goal was achieved by focusing on converting existing critical components, avoiding a great restructuring
of the actual architecture, while keeping the monitoring of the critical data as secure as possible. In specific,
some workloads (such as Prometheus) required complex changes in their build processes to ensure the final
binary was compliant with the SCONE framework requirements (specifically, ensuring the binary is a Position
Independent Executable, PIE, by changing the build process). Therefore, the main functionality of the TEE
module is the enhancement of the security and trustworthiness of the system by providing the execution of
5GZORRO services and components related to the monitoring of critical information in a TEE. SLA Monitoring,
Intelligent SLA Breach Predictor (ISBP) and Monitoring Data Aggregation (MDA) have been primarily selected
to be running under a TEE, in order to assure the aggregation, processing/computation integrity of SLA
monitoring data and to guarantee that the detection and prediction of SLA violations occur in a safe
environment.

Page 17 of 82

Another functionality is the exposure, at a higher level, of the capabilities offered by the TEE platform. This
functionality is provided by the TEE Management service. However, it’s important to note that since most of
the core functionalities needed to manage TEEs are provided by SCONE set of APIs and are not needed
externally by other 5Gzorro components, they are not being directly exposed by the TEE Management service.
In this regard, the TEE Management service mostly acts as a source of truth by exposing the capability to
attest the components running under a TEE.

2.2.2. Prototype implementation

Several hardware solutions were explored to provide the needed SGX support, by taking into account the
interconnectivity between the testbeds, practicality and cost. At this level, a solution that involved running
the workloads directly on bare metal was favoured over the integration of VM’s with SGX support (from
OpenStack or a Cloud Service Provider). In this regard, Intel NUC was the selected platform to be used as an
environment for TEE. This platform allows 5GZORRO to access a pool of compute resources whose underlying
CPUs have built-in native SGX support.

As mentioned before, SCONE framework is used to enable TEE capabilities by allowing the deployment of
application services on the aforementioned SGX-enabled hardware.

The adopted SCONE framework for TEE is based on four main components that allow deploying an
application in a secure environment:

• Session: Entails all security-relevant details of a SCONE application. It includes every aspect of the
container ecosystem such as commands to be executed on images, secrets, volumes and
environment variables. Everything is then attested with the unique signature of the enclave which is
authorized to retrieve the secrets from the CAS;

• LAS (Local Attestation Service): Service that runs locally, alongside the enclave, and the application
that wants to access the secrets. This service is responsible to complete the application attestation
and ensure that the hardware is SGX-enabled and share that information with CAS;

• CAS (Configuration and Attestation Service): Remote service which stores things like configurations,
secrets and filesystem keys needed by the application in runtime, that were provided by the session.
This service ensures that all secrets are protected from being visible by humans and are only visible
inside the TEEs. These secrets and configurations will then be put in transit and shared with the
application once the attestation takes place (when the application proves its integrity and
authenticity);

• Docker container: The trusted application intended to run in an enclave that once attested by the
LAS it will receive the configurations and secrets that are stored in the CAS.

Using these main four components, a stakeholder that wants to run an application in a secure environment
can easily achieve that with a few steps:

• Update the application to run on top of SCONE cross-compiled docker images and mount the source
code inside the container;

• Launch a new dedicated CAS, or use any existing one;

• Launch LAS alongside the enclave;

• Get the enclave SCONE hash;

• Upload the session to CAS with the enclave SCONE hash and all security details;

• Run the secure application in an enclave.

Page 18 of 82

As described in D4.2 [1], before the integration of TEE and SCONE with the selected 5GZORRO components,
a proof of concept was prepared to validate this environment and tools. For this, a Docker container was
deployed in a virtual machine with SGX-enabled capabilities in a Kubernetes cluster with two nodes, one with
SGX-enabled capabilities from the cloud provider Azure [5] and another without those capabilities placed in
an OpenStack instance. In this scenario (see Figure 2-3), it was validated that an application can run securely
in a non-trusted shared environment (i.e., OpenStack, Cloud, on-prem), since only the application itself (with
the hashes generated by CAS) can see its own security-relevant and runtime information. Every other service
or other tenant will see encrypted information at runtime or at rest (for more details on the proof-of-concept
refer to D4.2). The functional tests performed for this validation are presented in Table 2-2 in the following
section.

Figure 2-3: TEE Proof of concept diagram

After this preliminary proof-of-concept, the implementation efforts have been focused in integrating three
critical elements in 5GZORRO platform with TEE capabilities in order to improve their execution security: the
Monitoring Data Aggregation (MDA), the SLA Monitoring and the Intelligent SLA Breach Prediction (ISBP).

For the MDA, as it is responsible for processing and aggregating data, doing those operations in a TEE
provides the means to establish a high level of trust in that process, as SCONE can make the process tamper
resistant. With respect to SLA Monitoring and Intelligent SLA Breach Prediction, SCONE’s attestation
mechanisms can ensure that the sensitive SLA monitoring and breach predictor computations or authenticity
proofs for smart contracts can run inside a tamper proof environment where the private information will
never be exposed to outside actors.

Additionally, the TEE Manager is also integrated in a TEE, so that a complete chain of trust for the metrics is
established.

2.2.3. Functional tests

The steps and functional tests that have been carried out for validating the implementation of the proof-of-
concept and to validate the correct integration and implementation of the TEEs for each of the selected
5Gzorro components are described in Table 2-2. Generally, the process involves the “sconification” of each

https://app.diagrams.net/?page-id=O6IgNxdjHZ_OmtJNjBbg&scale=auto#G1BSTJlIvNfV0e1UNqpAc4bNJVgI8WUQ6s

Page 19 of 82

component individually using SCONE framework, creating a CAS session, deploying the component in a local
environment and attesting that it’s running in SGX, integrating it with the testbed NUC, and finally testing
the interaction of each deployed module with other components to validate and evaluate performance
(Figure 2-4).

Figure 2-4: TEE functional testing flow

Note that the CAS used for the tests was provided publicly by SCONE framework. The tests performed
specifically for the TEE Manager (API) are also displayed.

Table 2-2: Trusted execution environment security management functional tests

Name Description
Passed

(Yes/No/Partially)

Proof-of-concept: Create
docker image
(Sconification)

Create docker image on top of SCONE cross-compiler docker
images

Yes

Proof-of-concept: Setup
trusted node

Setup a node with SGX-enabled capabilities Yes

Proof-of-concept:
Instantiate LAS

Setup LAS service alongside the enclave Yes

Proof-of-concept:
Upload SCONE session

Upload SCONE session to CAS with the secrets that are
intended to run on the docker container

Yes

Proof-of-concept:
Instantiate docker
container

Instantiate docker container in the trusted node Yes

Proof-of-concept:
Retrieve secrets

Retrieve secrets from the docker container that are passed by
CAS once LAS attests its authenticity

Yes

Proof-of-concept:
Validate docker
container security

Check if the secrets that should be passed by CAS were not in
the container environment and the running code was
encrypted

Yes

Setup trusted node
(locally)

Setup a local node with SGX-enabled capabilities Yes

Setup trusted node
(testbed NUC)

Setup testbed NUC with SGX-enabled capabilities Yes

Instantiate LAS
Setup LAS service alongside the enclave (local environment and
NUC)

Yes

Upload SCONE sessions
Upload SCONE sessions to CAS with the secrets that are
intended to run on the docker container

Yes

MDA: Sconification
Create docker image on top of SCONE cross-compiler docker
images

Yes

MDA: Instantiate docker
container

Instantiate docker container in the trusted node (local
environment and NUC)

Yes

SLA Monitoring:
Sconification

Create docker image on top of SCONE cross-compiler docker
images

Yes

Page 20 of 82

SLA Monitoring:
Instantiate docker
container

Instantiate docker container in the trusted node (local
environment and NUC)

Yes

ISBP: Sconification
Create docker image on top of SCONE cross-compiler docker
images

Yes

ISBP: Instantiate docker
container

Instantiate docker container in the trusted node (local
environment and NUC)

Yes

TEE Manager:
Sconification

Create docker image on top of SCONE cross-compiler docker
images

Yes

TEE Manager:
Instantiate docker
container

Instantiate docker container in the trusted node (local
environment and NUC)

Yes

TEE Manager: Get
attestation information

Retrieve the attestation information of a component
instantiated on a TEE

Yes

In Figure 2-5 we can see the TEE Manager, SLA Monitoring, MDA and ISBP modules deployed on the NUC. It
can also be noticed the LAS service instantiated. Additionally, an example of logging on the ISBP running on
the Intel SGX Based TEE is presented. The original application was changed to run on the Intel SGX using the
SCONE framework.

Figure 2-5: Monitoring modules and LAS service running on the Intel SGX Based TEE

2.3. Security Analysis Service (SAS)

The Security Analysis Service, previously named Intra-domain Security, is the module that provide the
security services in charge of performing network diagnostics in order not only to detect possible network
vulnerabilities, attacks or threats for Network Services inside each domain, but also to apply the required
countermeasures for the mitigation of these adverse events.

Page 21 of 82

2.3.1. Main Functionalities

The SAS applies security analysis mechanisms for the collection and monitoring of network service metrics in
order to efficiently analyse the network traffic and detect possible network vulnerabilities or malicious
behaviour.

The main functionality of the module is the mirroring of the network traffic to the Security Analytics VNF
component for further security analysis, through a virtual Tap (vTap) VNF. In fact, vTAP VNF, which is
responsible for connecting the different Network Services of a Network Slice and also mirroring the
respective traffic, uses a virtual TAP configuration [4] to capture a copy of the data flowing between the
deployed Network Services of a certain domain. This happens, for example, through the presence of a virtual
switch on the virtual links between the respective services. In addition, the aforementioned VNFs (Security
Analytics, vTAP) are deployed alongside with the Network Slice requested from the stakeholders, as they are
responsible for the Network Services hosted on the specific Slice. In addition, if security threats or malicious
activity have been detected from the network analysis performed inside the Security Analytics VNF Security
Analysis Service, and especially the Security Analytics VNF module, is capable of applying the necessary
countermeasures and mitigation procedures to the Network Slice. These actions are mainly a set of traffic
rules, configurations of firewall policies or even the entire isolation of the evicted user’s VNF by blocking its
communication link with the other components of the Network Slice.

To this need, the Security Analysis Service can be deployed as a set of Security VNFs (vTAP, Security Analytics
& ELK) in conjunction with the Network Services VNFs requested from 5GZORRO platform consumers in the
same Network Slice Description according to MANO specification. In addition, the Security Analytics VNF can
be activated and start analysing the network traffic of the Network Services while further integrated with the
ELK VNF for storing the diagnostics, via automated and on demand mechanisms. Note that the vTAP and
Security Analytics VNFs are deployed per slices, however, the ELK VNF is set up per domain, so the ELK VNF
will store all the metrics provided by multiple networks slice under the same domain. For the deployment of
Network Services the ETSI OSM MANO orchestration framework [56] has been used as it also provides the
necessary tools for performing the respective automated and on demand configurations (day-1 or day-2
configurations). The high-level architectural diagram of this module is shown in Figure 2-6.

Figure 2-6: Security Analysis Service module architecture

Page 22 of 82

2.3.2. Prototype implementation

In the final implementation, the Security Analytics VNF component encapsulates the functionality and the
support of the Zeek platform [6] integrated with a Filebeat [7] instance for data collection. In addition, this
data can be further sent to the ELK VNF component that encapsulates both an Elasticsearch [8] for storing
the data and a Kibana for the visualization of the statistics [9]. Zeek is used as the network security monitoring
tool which is responsible for the analysis of network events that will be passed to Filebeat for the data
transformation and then stored/analysed within Elasticsearch platform. Finally, data is sent to Kibana
platform for visualization. Stored network data analysis is supported as well.

To deliver the JSON text based Zeek logs to Elasticsearch, Filebeat is used. It reads the Zeek log files and
delivers them to Elasticsearch. When providing data to Elasticsearch, a pipeline is specified for all events
that are inserted inside the Elasticsearch index. After that, all the Zeek logs can be accessed through Kibana
dashboard.

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in
near real time. Kibana is a browser-based analytics and search dashboard for Elasticsearch. All the software
modules encapsulated inside the Security Analytics VNF as well as the instances of Elasticsearch and Kibana
inside ELK VNF are deployed as Docker containers in a well-defined Docker network configuration, while the
respective Security Analytics, ELK and vTap VNFs use the appropriate Openstack images.

Finally, these services are implemented as a set of on demand and automated functionalities in order to
perform a variety of actions upon the Security Analysis Service module. These actions can be applied
remotely by the user from the orchestration frameworks as on demand configurations in order to enable the
SAS functionalities and customize their behaviour.

The implementation follows blacktop/docker-zeek project as published in:

https://github.com/blacktop/docker-zeek.

The final implementation of the SAS module can be found in the 5GZORRO GitHub repository at:

https://github.com/5GZORRO/intrasecurity .

2.3.3. Functional tests

In order to validate the SAS functionalities, we describe the communication flow and how the respective
components interact.

In fact, at the Security Analytics VNF, the Zeek container starts analysing the network traffic while the
obtained statistics in the form of log files are stored to a specific directory of the Security Analytics VNF. This
directory is shared also to the Filebeat container which is capable of retrieving the log files and transforming
them. In addition, the Filebeat container has a direct link with the Elasticsearch container that is placed inside
the ELK VNF in order for the transformed statistics to be stored. For this reason, the Elasticsearch container
can be found at the IP of the ELK VNF and also the exposed port 9200. Last but not least, the Kibana container
inside the ELK VNF has also a link with Elasticsearch container by applying only the name “elasticsearch” as
the two containers are included in the same VNF, namely the ELK.

Our software tests, Table 2-3, refer to the successful deployment of the various containers needed for the
module and the successful data sharing communication between them.

Table 2-3: Intra-domain functional tests

Name Description
Passed

(Yes/No/Partially)

1. Zeek service
Start traffic analysis and obtains statistics. Links with Filebeat by
sharing the same directory

YES

https://github.com/blacktop/docker-zeek
https://github.com/5GZORRO/intrasecurity

Page 23 of 82

2.Filebeat service
Transformation of Zeek’s statistics. Links with Elasticsearch which
is listening at the IP_ELK_VF:9200

YES

3.Elastisearch service Statistics from Filebeat stored. YES

4.Kibana service
Visualization of statistics. Links with Elasticsearch by applying the
respective container’s name

YES

2.4. VPN-as-a-Service

The VPN-as-a-Service (VPNaaS), previously called Inter-domain Security module, is in charge of managing the
establishment of secure and reliable connections between different domains within 5GZORRO. Thus, this
module offers on-demand VPN-as-a-Service, so that the interconnection between domains is done
automatically without any previous configuration. For this purpose, it integrates the key derivation necessary
to establish the secure connection with the Identity & Permissions Management module (see D3.2 [49]),
obtaining the cryptographic keys and information from it. In addition, the VPNaaS interacts with the Network
Service Mesh Manager (NSMM) which enables the stitching of services in different domains, creating the
desired resources in the operator to the exposed services to the outside world and securing the
communication between them through the VPNaaS modules.

2.4.1. Main Functionalities

The VPNaaS offers to other 5GZORRO Platform modules a specific interface to interact with the underlying
gateway to manage the lifecycle of an on-demand tunnel establishment. Thus, the main functionalities of the
VPNaaS are reported below:

• Configuration and deployment in the network gateways of each domain, so that they act as an
intermediary between the end entities and the external domain.

• Exposing capabilities to deal with encrypted payload forwarded by the Identity & Permissions
Management module.

• Securing only the IP of the Virtualized Infrastructure Manager to redirect the network traffic, avoiding

protecting all traffic passing for the NSMM.

• Verifying the identity of the other gateway through sharing its unique identifier named Decentralized
Identifier (DID) [51], public key and timestamp with the Identity & Permissions Management module.

2.4.2. Prototype implementation

In the final prototype, a full version of the entire set of interfaces, defined in D4.4 [19], has been implemented
to verify its suitability and to test the desired functionalities. The functionalities which have been
implemented for this release are: a) Client-to-gateway and gateway-to-gateway authentication; b)
Integration with the Identity and Permission manager module for key management and identification; c)
Integration with the NSMM for the configuring of the gateway and deployment.

The prototype is implemented following a request/response setup based on a Restful API. The definition of
the interfaces is available as Swagger file at:

https://5gzorro.github.io/VPNaaS/.

The prototype has been implemented using Python 3, with the following additional packet requirements:

• flask and flask_restful, for the Restul API setup [10]

• Gevent, for networking management [11]

https://5gzorro.github.io/VPNaaS/

Page 24 of 82

• Werkzeug, for the WSGI server [12]

For the VPN service setup and management, WireGuard VPN [13] has been leveraged. WireGuard is an open-
source software implementing VPNs with state-of-the-art cryptography and an easy setup. This tool aims to
provide faster connections than previous solutions such as IPSec [14] or OpenVPN [15]. WireGuard works in
a client-server setup in which VPN connections are added using new network interfaces. This configuration
enables to have different VPN connections to different domains in the same client. The only configuration
needed is to define which IP range is redirected to each WireGuard interface.

To enable the automated installation and configuration of WireGuard, the module includes an interface
named "launch" which is in charge of deploying WireGuard in the target machine and of configuring the
required network properties to enable traffic forwarding. Additional packets installed during setup are linux-
kernel-headers and openresolv.

The 5GZORRO GitHub repository of the module is available at:

https://github.com/5GZORRO/VPNaaS

The current prototype is released in the form of a Virtual Machine (VM) as the module is intended to be
deployed in gateways (which are rarely deployed as containers). However, it might be possible to deploy the
module in containers if the required dependencies are fulfilled.

2.4.3. Functional tests

The functional tests (see Table 2-4) carried out for this module are mainly related to the verification of the
correct functioning of the implemented methods. In particular, Table 2-4 showcases the interaction between
the NSMM and the VPNaaS to establish or terminate a secure connection (the Connection establishment and
Connection deletion tests) or the interaction between the VPNaaS and the Id&P modules to verify the public
key and the DID.

Table 2-4: VPNaaS functional tests

Name Description
Passed

(Yes/No/Partially)

Module setup The module can be automatically installed and configured. Yes

Client addition
A new client is connected to the VPN, obtaining a client IP in the
VPN.

Yes

Client removal A client is disconnected, removing its IP from the known list. Yes

Connection
establishment

The automated connection establishment between two VMs
running in different subnets is tested.

Yes

Connection deletion
In the current design we use the public key to search for the client
to be removed.

Yes

Key verification
The gateway checks the identity of the other gateway through
sharing its DID, pubkey and timestamp

Yes

https://github.com/5GZORRO/VPNaaS

Page 25 of 82

3. Intelligent and Automated Slice & Service
Management

The 5GZORRO Intelligent and Automated Slice and Service Management (ISSM) sub-system focuses on
automated management of secured cross-domain slices and services within them. The ISSM is thus
responsible for enforcing business transactions both at the system level by interacting with the Network Slice
and Service Orchestrator (NSSO) and with alternative slicing technologies that might be developed in the
future, as well as by managing business transaction contexts across the entire 5GZORRO platform allowing a
principled, repeatable, auditable, and trustworthy interaction among the multiple components of the
platform to realize a specific business flow.

The 5GZORRO Intelligent and Automated Slice & Service Management sub-system is comprised of three
modules:

• ISSM Workflow Manager: responsible for executing the orchestration workflow

• ISSM-MEC: handles deployment of 5G slices natively on Kubernetes (K8s) [55] in a multi-cluster
environment

• ISSM-Optimizer: optimizes cost-efficiency and cost-trustworthiness trade-offs of network services
and slices

Figure 3-1: ISSM interaction with the rest of the 5GZORRO platform components

Figure 3-1 provides a high-level description of how ISSM interacts with the rest of the 5GZORRO platform.
The numbers on the arrows signifying the interactions do not necessarily correspond to sequential steps,
even though they are suggestive of a typical business flow.

1. An administrator persona interacts with ISSM through the 5GZORRO portal. Our implementation
supports selection of single and multiple Product Offers in the context of a single instantiate and
scale-out operations for VNF, edge resources, slices, and services as well as higher level intents that

Page 26 of 82

only indicate desired properties for slices and services, such as geography, cost, and QoS letting ISSM
to figure out the rest of the lower level details and perform optimization along the way.

2. The portal calls REST API that we implemented as NBI for ISSM-WFM to pass it an array of product
offers and/or a high-level intent that should be used to instantiate or scale-out a slice or a service.

3. If necessary, for example in case of a high-level intent that indicates that a customer is looking for a
Content Distribution Network (CDN) cache service with specific QoS and geography coverage, ISSM-
WFM makes a REST call to SRSD to identify suitable product offer candidates. We do not show how
SRSD interacts with the Catalog and other components, since this is out of scope for describing ISSM
interactions with the platform.

4. ISSM-WFM performs a REST call on ISSM-O (Optimizer) to optimize the product offers selection after
the search space has been narrowed down by SRDS.

5. After ISSM-O determines the final selection of the product offers, ISSM-WFM interacts with the
Marketplace to acquire these resources.

6. Once the resources required for the service instantiation or scale-out have been acquired, ISSM-
WFM instantiates or scales out either via NSSO or ISSM-MEC. Both serve as the technical level
orchestrators. More technical level orchestrators can be added to the ISSM ecosystem in the future.

7. ISSM-MEC contacts License Manager to validate instantiation.

8. At any asynchronous point in time, SLA Monitor might send notifications about an actual SLA breach,
to ISSM-WFM via the interdomain communication fabric (Kafka) to trigger a preinstalled mitigation
flow. Currently, scale-out mitigation flow is implemented.

9. At any asynchronous point in time, ISBP might send notifications about an actual SLA breach, to
ISSM-WFM via the interdomain communication fabric (Kafka) to trigger a preinstalled mitigation flow.
Currently, scale-out mitigation flow is implemented. For both interactions 9 and 10, ISSM-WFM
might run the sequence explained above in interactions 3 – 7 to optimize its scale-out step.

10. ISSM-O can continuously pull data from the operational data lake to populate the internal
mathematical optimization models

11. ISSM-O can call on ISSM-WFM requiring to perform re-optimization of the current resource
allocation and product orders.

It should be noted that while Figure 3-1 depicts ISSM components as being centralized, they are only logically
centralized for ISSM-WFM and ISSM-MEC and are, in fact, distributed and symmetric. ISSM-O is a centralized
platform component, because of its role as an inter-domain planner.

3.1. ISSM Workflow Manager (ISSM-WFM)

The ISSM Workflow Manager (ISSM-WFM) executes orchestration workflows in a context of a business
transaction, such as extending a slice across a second domain in cooperation with the Network Slice and
Service Orchestration.

3.1.1. Main Functionalities

In deliverable D2.4 [16], updated orchestration workflows have been presented which better capture the
intended behaviours in scenarios such as cross-domain slice establishment, scale-out and optimization.
Furthermore, in D2.4 updates have been provided about how ISSM-WFM integrates with the rest of the
functional 5GZORRO architecture. The new design of ISSM-WFM is fully distributed. This is shown in Figure
3-2. In this distributed architecture, each domain locally installs ISSM API server (implemented as K8s Service),
Event Bus (implemented by Kafka), Event Mediator (implemented as Argo Sensor), and a set of Workflow

Page 27 of 82

Repository (implemented as Argo Workflow Templates). Initially, the set of workflow templates contains only
one generic template, “Orchestrate”. This template implements a generic Argo flow that interacts with NBI
of a technical orchestrator in that domain. Currently supported technical orchestrators are “Dummy”,
“NSSO”, and “ISSM-MEC”. The template can be extended to support additional technical orchestrators in the
future.

Other workflow templates are being added dynamically when Product Offers are acquired on the
marketplace.

A typical ISSM-WFM workflow would start in a specific domain (for the sake of discussion and without losing
generality, let us assume that a workflow starts in Domain A triggered by a Requestor), which can be either
Portal or some automated functionality, such as Intelligent SLA Breach Predictor, SLA Monitor, ISSM-O or any
other future manual or automated component being part of zero touch slice management and orchestration
cycle. The request is performed via ISSM-WFM API server.

The ISSM-WFM API server pre-processes the request, creates a business transaction specification, and
publishes it on the Event Bus. An Event Mediator receives it from the bus and triggers an appropriate
workflow that was previously onboarded to the Workflow Repository of the domain as explained in the next
subsection. The local orchestration workflow starts executing. The steps can span multiple components of
the 5GZORRO platform. At some step of the workflow running in Domain A, an orchestration (or any other
logic) sub-workflow might be required to be executed in Domain B. To that end, the workflow step in Domain
A publishes a message (containing parameters and an entry point for a workflow in Domain B). Event
Mediator of Domain B is subscribed on the topic dedicated to this domain in the cross-domain Event Bus. It
receives the message and triggers an appropriate workflow in Domain B. At some point in the workflow of
Domain B, the control might have to be passed back to Domain A. Possibly also status and variables must be
passed back. To that end, the workflow of Domain B publishes a message on the cross-domain Event Bus.
This might trigger an optional “stitching workflow” in the cross-domain Workflow Engine, after which control
will be passed to Domain A by publishing a message on a dedicated topic for Domain A. The Event Mediator
of Domain A receives the message from the cross-domain bus and continues with the Domain A workflow.
This way, control can be passed back and forth arbitrary number of times across different per-domain ISSM-
WFM components with support for “stitching” and synchronization by the cross-domain ISSM-WFM
component and arbitrarily complex business level orchestration flows can be developed by the 5GZORRO
platform developer.

Page 28 of 82

Figure 3-2: ISSM-WFM Distributed Architecture

3.1.2. Prototype implementation

The final ISSM-WFM prototype can be found on the 5GZORRO GitHub at:

https://github.com/5GZORRO/issm/.

The final prototype supports all three use cases and provides a methodology for developing new flows.

We now highlight the ISSM-WFM implementation with respect to the lifecycle of orchestrated service, VNF,
slice, or any other resource supported by the 5GZORRO information model. The GitHub repository linked
above can be used to retrieve further details.

The 5GZORRO methodology assumes that complex custom services can be dynamically created out of
multiple Product Offers. These custom services require custom orchestration flows. In general while many
steps of orchestration flow are recurring across flows (e.g., product offers discovery, product offers
optimization, product offers acquisition, passing parameters to a technical orchestrator, polling technical
orchestrator, sending/receiving SLA breach event for previously instantiated services, etc.), there are
typically some service-specific steps, dependencies, and parameters that are idiosyncratic to lifecycle
management operations of a service, such as “instantiate” and “scale-out”.

Indeed, “instantiate” and “scale-out” have different semantics across different use cases, because the
services considered in the use case can be radically different.

To handle this complexity in a generic way, we have implemented the following two step methodology:

• Implement service-specific orchestrator plugin: Product Offer developer should implement an Argo
workflow template that captures the Product Offer specific orchestration. This template captures
lifecycle operations for this Product Offer. Implementation-wise, this template is a yaml file.
Examples corresponding to the 5GZORRO use cases can be found on the 5GZORRO GitHub repository
at:
https://github.com/5GZORRO/issm/tree/v2.1/snfvo;

• Connect service-specific orchestrator plugin to Domain Event Sensor (i.e., to the Argo Kafka sensor
of the domain): in the current prototype implementation, this is done by applying the

https://github.com/5GZORRO/issm/
https://github.com/5GZORRO/issm/tree/v2.1/snfvo

Page 29 of 82

https://github.com/5GZORRO/issm/blob/v2.1/apply-domain.sh script. We refer to this operation as
workflow onboarding.

From this point on, ISSM-WFM is enriched to orchestrate Product Orders that correspond to this Product
Offer. This way ISSM-WFM is extensible and evolvable to future product offers.

3.1.3. Functional tests

The functional tests to validate ISSM-WFM API with respect to the Workflow 3-6 reported in D2.3 [17] are
presented in Table 3-1. The tests have been performed using mock-up APIs for all involved components. The
ISSM-WFM APIs have also been tested for the workflows involving the actual components, such as NSSO,
and Data Lake, as described in section 5.2.

Table 3-1: ISSM-WFM functional tests

Name Description Passed (Yes/No/Partially)

Create flow Create a new business flow Yes

Execute flow Execute a new business flow Yes

Get progress Get progress of a business flow using web hook Yes

Delete flow Remove a business flow from ISSM-WFM Yes

Continuous progress Observe a progress of a flow with GUI Yes

3.2. ISSM-MEC

The ISSM-MEC Manager is a cross-domain component that realizes control plane of the Cloud-Native MEC
Platform (CNMP). Architecturally, using the terminology of ETSI MEC [18], the ISSM MEC Manager belongs
to the MEC System, i.e., the control plane of MEC, and CNMP represents MEC Hosts.

The key idea behind ISSM MEC Manager is to use Kubernetes (k8s) [55] as the orchestrator for CNFs that are
hosted by MEC to extend the cloud native experience also to the control plane itself rather than treat only
as NFVI that should be externally orchestrated.

The Cloud Native MEC Platform (CNMP) is a per-domain component. External to ISSM, it was designed to
represent and experiment with the emerging cloud native MEC environment, to be managed/federated
under 5GZORRO. This architectural component was conceived during the first year of the project, following
the industry trend for cloud native transformation. In 5GZORRO its role is twofold: first, to demonstrate that
5GZORRO platform can integrate with cloud native k8s based MEC and, second, to extend 5GZORRO use
cases validation to this emerging type of platform.

Final design updates for both ISSM-WFM and ISSM-MEC are described in D4.4 [19].

https://github.com/5GZORRO/issm/blob/v2.1/apply-domain.sh

Page 30 of 82

3.2.1. Prototype Implementation

Figure 3-3 depicts the final implementation of ISSM-MEC and MEC CNMP with application to free5GC open
source 5G project [20]. The details of the implementation and operational prototype can be found on the
5GZORRO GitHub at:

https://github.com/5GZORRO/issm-mec-cnmp

Figure 3-3: Reference Implementation of ISSM-MEC Manager and MEC Cloud Native Platform with
support for slice deployment for fully kubernetized free5GC Core and UPF.

3.3. ISSM Optimizer (ISSM-O)

The ISSM Optimizer (ISSM-O) is a cross domain component that optimizes cost-efficiency and cost-
trustworthiness trade-offs of network services and slices required to be created in a context of a specific
business transaction subject to constraints such as security and service area. ISSM-O continuously optimizes
services and slices that have been already set up in previous transaction flow executions.

The main idea behind ISSM-O is to optimize and select the best resource offers from the Marketplace, given
a specific objective. ISSM-O closely works with the ISSM-WFM, where it gets the physical resource offers
acquired from the interactions between ISSM-WFM and SRSD components, together with slice topology
received from the portal. After that, the ISSM-O components performs a set of optimization processes in
order to reach a solution to embed the service requested onto the physical resource offers.

The final design of the ISSM-O can be found in D4.4 [19].

3.3.1. Main Functionalities

The final updates regarding optimization flows were provided in D2.4 [16], which describes scenarios such as
optimization for the establishment of a slice request and optimization for the scenario of scaling of an already
existing slice.

https://github.com/5GZORRO/issm-mec-cnmp

Page 31 of 82

As presented in D2.4 [16], ISSM-O deals with NP-hard problems, which is to embed logical networks on top
of shared substrate network across all the technological domains. In this regard, we have studied the problem
of service embedding and resource allocation, and how to implement it in the ISSM-O component of
5GZORRO. The main issue with this joint problem of service embedding and resource allocation is that it
becomes interactable when the problem size grows, meaning more nodes are added to the network or more
services are issued to be deployed in the network. The state-of-the-art works in the domain mainly seek
individual embedding of service instances (i.e., virtual networks) with every Virtual Network Function (VNF)
instance and every individual forwarding path defined when a user session occurs. On the contrary, our
proposed model is Fluid. Our heuristic solution comprises two phases: (1) slice capacity planning using Linear
Programming (LP) and (2) greedy Protocol Data Unit (PDU) session allocation when sessions are initiated by
the slice/service consumer. Using this technique, we are able to scale to extremely big networks with
thousands of users making service requests.

Concerning the first phase of our proposed method, which is to plan the capacity in the network using LP
techniques, we use mathematical solvers to reach an optimal solution to the problem. There are many solvers
out there than can be employed for solving such a problem, but each have their own characteristics and a
set of limitations. After evaluating several possibilities for open-source tools, we have selected PuLP as a tool
to generate general Linear Program implementations that can then be given as input to different backend
solvers. Our main goal in the ISSM-O is to make it compatible with different optimization solvers, where,
based on the requests from the customer and the time required to solve a model, the backend solver can
change.

3.3.2. Prototype implementation

The final prototype implementation of the ISSM-O captures the entire interfaces needs to interact with the
ISSM-WFM. ISSM-O’s interaction with the ISSM-WFM happens through an Apache Kafka message broker,
where it listens to a specific topic to receive the requests, perform the optimization process, and then publish
the results on a specific topic. The functionality of the ISSM-O has been tested for the scenarios of
optimization for slice establishment and slice scaling.

The prototype implementation of the ISSM-O component is done using Python 3, with the below packages
employed in the implementation:

• PuLP for LP modelling in Python

• COIN-OR

• Numpy

• Pandas

As mentioned earlier, we have used PuLP as the LP modeler in order to generate optimization models that
can used by different solvers. The main appealing feature of PuLP is that it is essentially capable of generating
Mathematical Programming System (MPS) or LP files and call GLPK [23], COIN-OR CLP/CBC [24], CPLEX,
GUROBI, MOSEK [25], XPRESS [26], CHOCO [27], MIPCL [28], SCIP [29] to solve linear programming problems.
Our implementation of ISSM-O can be easily tuned to employ any of the mentioned solvers to be used for
the optimization.

The 5GZORRO GitHub repository of the module is available at:

https://github.com/5GZORRO/issm-optimizer.

https://github.com/5GZORRO/issm-optimizer

Page 32 of 82

4. MANO and Slicing Enhancements

This section describes the sub-system of the 5GZORRO Platform devoted to the Management and
orchestration of services and slices. From an architectural point of view, the set of services offered by the
orchestration sub-system is mainly oriented to the internal consumption by other components in the
platform, rather than by the 5GZORRO stakeholders themselves. In this sense, such set of modules offers
functionalities related to resource management and monitoring, e-licensing management as well as to
control and network slice and service orchestration within a stakeholder’s domain. These functionalities are
available towards the upper and more abstracted layers of the 5GZORRO platform, such as the Intelligent
Slice and Service Management, which exploits them for building service and slices based on an intelligent
composition of the available resources. With respect to what already reported in D4.2 [1], the set of modules
composing the MANO enhancements introduces a new component, the Network Service Mash Manager
(NSMM), that provides the capability of properly configuring the virtual infrastructure networks and specific
service (see VPNaaS in section 2.4docs-internal-guid-acb07179-7fff-ca60-a4) to establish secure connections
in a context of cross-domain end-to-end network slices.

Figure 4-1: Mano and Slicing enhancements modules in 5GZORRO Platform

Figure 4-1 shows the modules part of the MANO that belongs to the Zero-touch Management and
Orchestration logical sub-system of 5GZORRO platform. The dashed arrows indicate the explicit interactions
between the modules.

4.1. Any Resource Manager

The Any Resource Manager (xRM) is a module in the 5GZORRO Platform, available in each stakeholder
domain, that directly interacts with the underlying 5G Virtualized Platform, offering, towards the upper layer
applications, a set of services related to the resources monitoring and management, including a direct
support to the 5GZORRO Resource and Service Offering Catalogue (RSOC) through a translation service for
the on-demand translation of technical descriptors (virtual network function resources, network services,
radio resources, spectrum resource, edge resources, cloud resources, slice services) into proper resource and
service models defined by the TM Forum [30].

Page 33 of 82

4.1.1. Main Functionalities

The xRM is designed to be a multi-container application, with the aim to provide the high level of flexibility
required to immediately tackle any changes or updates in both resource composition and in the underlying
5G virtualized infrastructure.
The main functionalities the xRM offers are:

• Proxy Interface for the underlying 5GZORRO Virtualized Platform leveraging an authentication
system based on API key, e.g., Monitoring Data Aggregator (MDA) and E-Licensing modules exploit
the xRM interface to interact with components of the 5GZORRO Virtualization Platform like NFV
Orchestrator (e.g., ETSI OSM), VIM, Radio and Network controllers.

• On-Demand translation of technical resource and service descriptors into TM Forum resource and
service models and onboarding of these assets on the RSOC

• Proxy Interface to retrieve VNF resources, network services, radio resources, spectrum resource,
edge resources, cloud resources, slice services from the underlying components of the 5GZORRO
Virtualization Platform (i.e., 5G-Catalogue for VNFD and NSD, Radio Controller for Radio and
Spectrum, Slice Manager for Edge, Cloud and Slice).

The final architectural design of the xRM was reported in D4.4 [19].

4.1.2. Prototype implementation

xRM is a module constituted by a set of components; each of these components expose a REST Interface to
access the capabilities of the module itself, in details:

• 5G-Catalogue: Retrieves the VNF and NS descriptors from the underlying NFVO in order to make
them available for the translation into TM Forum resource and service models and to enable the
5GZORRO Portal to display these kinds of resources. The 5G-Catalogue is a Java Spring Boot
Application.

• Apache Kafka: Message Broker used internally by the 5G-Catalogue services, it is not exposed
externally.

• Resource Definition Translator: A Java Spring Boot Application to enable the translation of assets,
previously specified, from the 5GZORRO Portal. The Resource Definition Translator exposes a REST
Northbound Interface with a set of POST requests to perform the translation of the specified assets.
The Translator fetches the asset to be translated from the 5GZORRO components that hold that
particular resource (e.g., 5G-Catalogue for VNFD and NSD, Radio Controller for Radio and Spectrum,
ecc…); these are the same components backed by the xRM.

In order to aggregate and compose the REST interfaces of the components that compose the xRM, listed
above, and, at the same time, to create new REST endpoints, a tool called Gravitee [31] was used. Gravitee
is an API Gateway that permits to manage, create and secure APIs. In particular, Gravitee was used to secure
the REST API exposed by the 5G-Catalogue and the Resource Definition Translator: two sets of APIs were
created using Gravitee to wrap the API exposed by the Spring Boot Applications. A module that wants to
consume the API defined by Gravitee needs to subscribe to the API Application created within Gravitee itself
and then use the released API Key in each subsequent HTTP REST request to access the capabilities of the
wrapped modules. The same approach is used to proxy also other components of the 5GZORRO Virtualization
Platform, in particular, APIs for the NFV Orchestrator (ETSI OSM), Radio Controller and Slice Manager were
defined in order to enable the 5GZORRO modules to exploit the underlying infrastructure (i.e., with the
5GZORRO Virtualized Platform) without directly interacting with it. Figure 4-2 depicts the API defined with
Gravitee.

Page 34 of 82

Figure 4-2: Gravitee API

Figure 4-3 depicts how the defined APIs are mapped to the components that form the xRM.

Figure 4-3: Gravitee Gateway and the defined APIs and the wrapped components

Each Gravitee API works as a proxy to the northbound interface of the backed 5GZORRO Platform component
so, as mentioned above, the upper layer components do not have to directly interact with underlying
components of the 5GZORRO Virtualization Platform (i.e., directly interact with the correspondent
northbound interface); and, implement an authentication mechanism for the underlying component.

The rAPP is a containerized application (rAPP) that serves as a proxy to i2CAT’s RAN Controller for managing
spectrum resources and exposing spectrum and radio resources to the xRM. To this aim, the rAPP exposes a
RESTful API, which is shown in Figure 4-4. In terms of deployment, the Radio Controller is deployed in virtual
machines orchestrated by OpenStack, with its software components, including the rAPP, running as
containers managed by Docker.

Figure 4-4: rAPP API

The 5GZORRO GitHub repository of the module is available at:

https://github.com/5GZORRO/xRM.

https://github.com/5GZORRO/xRM

Page 35 of 82

4.1.3. Functional Tests

This section reports the set of the functional tests performed during the implementation of the xRM. As
described above, the xRM interacts with several elements of the 5GZORRO platform and the 5G Virtualized
infrastructure to perform its own tasks so, the set of tests reported in the tables below includes also the
integration with the dependency modules.
Table 4-1 describes tests for the retrieval of different NFV Descriptors (NSD, VNFD, etc.) to be used as input
for the translation process towards the TM Forum models. The descriptors are retrieved by the 5G-Catalogue
components of the xRM that collected them directly from the NFVO.

Table 4-1 : 5G-Catalogue Functional Tests

Name Description Passed
(Yes/No/Partially)

Descriptors
Retrieval

Retrieval of the on-boarded VNFD, PNFD, NSD (previously retrieved
from the NFVO and already present in 5G-Catalogue)

Yes

NFVO Descriptors
Retrieval

Retrieval of the VNFD, PNFD, NSD descriptors from the NFVO Yes

Table 4-2 shows tests related to the xRM interface configured to extract metrics to be collected by the
MDA, directly for the API exposed by OSM.

Table 4-2: OSM API Functional Tests

Name Description Passed
(Yes/No/Partially)

Collecting values of
the monitored
metrics

The module proxy the collection of the metrics from OSM (API
wrapping)

Yes

Proxy OSM NBI Wrap and secure with Gravitee the Northbound INterface of OSM Yes

In Table 4-3 the tests have been conducted against the interface exposed by the radio controller that, when
required, retrieves the list of on-boarded spectrum and radio resources, and enforces specific configuration
in the RAN infrastructure.

Table 4-3: Radio Controller API Functional Tests

Name Description Passed
(Yes/No/Partially)

Radio and Spectrum
Retrieval

Retrieval of the on-boarded Radio and Spectrum resources from the
Radio Controller

Yes

Spectrum Resource
Creation

Registration of a Spectrum Resource Yes

Radio Resource
Registration

Registration of a Radio Resource Yes

Page 36 of 82

Radio Resource
Configuration

Configuration of the radio parameters of a Radio Resource Yes

Discovery of Radio
and Spectrum
Resources

Discovery of registered Radio and Spectrum Resources Yes

Service Configuration Configuration of a service on a set of Radio Resources Yes

Table 4-4 shows tests for resource and service retrieval to feed the xRM translation module. In this case,
the target module is the I2CAT Slice Manager (see section 4.2_Network_Slice_and).

Table 4-4: Slice Manager API Functional Tests

Name Description Passed
(Yes/No/Partially)

Edge, Cloud, Slice
Retrieval

Retrieval of the on-boarded Edge, Cloud and Slice from the Slice
Manager

Yes

Finally, Table 4-5, shows tests related to the translation of services and resources collected by different
modules: 5G-Catalogue/NFVO, Radio Controller and Slice Manager. The table include also a test for the
final step of the translation process: the storage of the translated information in the Resource and Service
Offer Catalogue (RSOC, reported in D3.2 [49]).

Table 4-5: Translator API Functional Tests

Name Description Passed
(Yes/No/Partially)

VNFD, PNFD, NSD
Translation

Translation of VNFD, PNFD, NSD from ETSI SOL-006 to TMF 633, 634 Yes

Radio and Spectrum
Translation

Translation of Radio and Spectrum resources to TMF 633 Yes

Edge, Cloud, Slice
Translation

Translation of Edge, Cloud and Slice resources to TMF 633, 634 Yes

RSOC POST Invocation of RSOC to store the translated resources and services Yes

4.2. Network Slice and Service Orchestrator

The Network Slice and Service Orchestrator (NSSO) is responsible for processing communication service level
lifecycle management actions, namely instantiate, terminate and scale, received from the Intelligent and
Automated Slice & Service Management (ISSM). With this scope, the NSSO performs the mapping of the
communication service into network slices, within an administrative domain, and interacts with the 5G
virtualized infrastructure for the lifecycle management of the resources associated with the network slices.
This mapping is performed based on rules and algorithms which can be updated dynamically as part of the
management control loops. Moreover, the NSSO is responsible for configuring the monitoring metrics
associated to the service, the correspondent e-Licenses to be attached to the service instances and the virtual
infrastructure networking, when the local network slice is part of an e2e one across multiple domains.

Page 37 of 82

4.2.1. Main Functionalities

The main scope of NSSO is to manage the lifecycle of service and slices within an administrative domain. With
respect to the initial prototype reported in D4.2 [1], the current version of the NSSO has been integrated
completely in the 5GZORRO platform, as depicted in Figure 4-5 showing the interaction with the modules
involved in the orchestration process.

Figure 4-5: Network Slice and Service Orchestrator interactions

The NSSO exposes a REST interface towards the ISSM, which represents the 5GZORRO business-oriented
orchestrator that acts as a bridge between the 5GZORRO Marketplace and orchestration stack, triggering
orchestration commands on the basis of business events such as new product orders, service extensions with
new resources acquired from marketplace, etc. During its orchestration operations, the NSSO interacts with
other components of the 5GZORRO platform to prepare the context for the deployment of a new Network
Service/Slice before requesting its explicit provision to the modules of the 5G Virtualized infrastructure. In
particular, the NSSO consumes services from the following modules:

• NSMM (See section 4.3): NSSO queries the NSMM in the case of cross-domain Network Slice/Service
that requires the 5GZORRO VPN cross-domain service (VPNaaS) to secure the connectivity between
the involved domains.

• eLicensing Manager (eLM, see section 4.4): NSSO requests eLM to check license terms of the 5G
product before proceeding with the orchestration operations.

• MDA (Reported in D3.2 [49]): NSSO instructs the Monitoring Data Aggregator to collects metrics
related to the target Network Service/Slice to be deployed.

With respect to the 5G virtual infrastructure, NSSO interacts directly with NFV Orchestrator, VIM and Radio
Controller for Network service and slice, provisioning, resource allocation and radio configuration.

4.2.2. Prototype implementation

The NSSO is a multi-module component built by the integration of two different orchestration platforms: the
Nextworks Vertical Slicer (VS) and the I2CAT Slice Manager (SM). The VS represent the software baseline and,
as depicted in Figure 4-6, consists of two main software components, the Vertical and the network service
management functions (V/NSMF) with the respective repositories for maintaining technical descriptors
(V/NS Catalogues) and Service/Slicer Records (V/NS Record).

Page 38 of 82

Figure 4-6 : NSSO software architecture

The VSMF is responsible for processing the service lifecycle management requests, while the NSMF contains
the logic to translate network slices into resource and network service allocations in the 5G Virtualized
infrastructure. In particular, the VS NSMF offers standardized network slice management interfaces, and
implements a driver-based approach to interact with the underlying infrastructure and MANO platforms. In
particular, several ETSI NFV information models are supported: IFA-014 [32], SOL-006 [33].

In terms of implementation, both VSMF and NSMF are Java Spring Boot applications, while the catalogues
and the record databases are maintained by a PostgreSQL instance. The interaction between the two
modules happens through specific interfaces that implements both request/response (REST API) and
publish/subscribe communication paradigms, for enabling both synchronous and asynchronous message
exchanging. The VSMF exposes a REST-based North-bound interface (NBI) that is consumed by the ISSM to
make requests to the NSSO. The OpenAPI definition of the NBI is depicted in ¡Error! No se encuentra el origen
de la referencia..

The SM is evolved from the 5GCity project [34] and inside the NSSO acts as another NSMF providing the
capabilities to interact with the radio controller and allocate resource in the VIM. SM has been extended in
the context of 5GZORRO to meet the requirements of a NEST-based slice provisioning. To do so, the following
functionalities have been added in the current prototype:

• Management of Generic Slice Template (GST): Define the slice attributes together with the set of
supported values for each of them in the managed domain. The specific attributes that we are
currently using are:

o Isolation Level (e.g., Logical Isolation)
o User Data Access (e.g., Direct internet access)
o Compute Availability Zone (e.g., nexusEdge)
o Access Technology (e.g., "5G", "4G", "Wi-Fi")
o Area of Service
o Radio Spectrum (WiFi channel, 4G/5G band, duplex mode)
o Maximum Downlink Throughput
o Maximum Downlink Throughput per UE
o Maximum Uplink Throughput
o Maximum Uplink Throughput per UE

Page 39 of 82

• Management of Network Slice Type (NEST): Define an instance of the GST with required values for
the desired attributes. Note that in order to be feasible, selected values must be a subset of
supported values. Together with the registration of every NEST, a network slice blueprint [35] (i.e.
required physical and logical resources) is also generated in the SM, which references the resources
to be used by this NEST. In the current prototype, this can be done in two different ways:

o Imperative approach: The resources to be used by the slice are also passed in the payload
provided in the NEST creation request.

o Declarative approach: The internal logic of the SM (as NSMF) and the RAN Controller (as
NSSMF) is used to determine the resources to be included in the slice blueprint, based on
the requested attributes’ values.

• NEST-based Network Slice Instance (NSI): Define a network slice instance following the specifications
of the blueprint associated with the selected NEST. Additionally, some configurable parameters are
also expected at this step for the required slice/service (e.g., PLMN, SSID, etc.)

Figure 4-7: NSSO OpenAPI specification

Both VS and SM are currently deployed as container applications maintained in a Kubernetes environment:

Page 40 of 82

• VSMF: Containerized deployment of the vertical service management function available in [36]. This
module contains the driver to interact with NSMF and SM. Available in [36].

• NSMF (VS): Containerized deployment of the network slice management function available in [36].
This module contains the drivers to interact with the MDA, e-Licensing Manager and NSMM, using
the APIs established in [37][38]. It also onboards a driver to interact directly with the NFVO (ETSI
OSM [39])

• NSMF (SM): Containerized deployment of the evolved Slice Manager, with services exposed via the
APIs established in [40]. This module contains the driver to interact with the i2CAT’s RAN Controller.
In terms of deployment, the i2CAT SM is deployed in the 5GBarcelona testbed as a software
container orchestrated by Kubernetes. In Figure 4-8, the OpenAPI showcasing the extended
functionalities can be checked.

Figure 4-8: SM OpenAPI

The 5GZORRO GitHub repository of NSSO is available at:

https://github.com/5GZORRO/nsso.

4.2.3. Functional tests

The set of functional tests conducted so far on the NSSO are reported in Table 4-6. In the description of each
test is mentioned any dependency and interaction with other 5GZORRO modules, if required to demonstrate
the target functionality.

Table 4-6: Network Slice and Service Orchestrator functional tests

Name Description
Passed
(Yes/No/Partially)

Service instantiation

A simple service/slice instantiation is requested from the ISSM.
The NSSO provisions a network slice with one network service
relying on the local domain functionality. This would include
several interactions with different modules:

Yes

https://github.com/5GZORRO/nsso

Page 41 of 82

• MDA - The NSSO requests the configuration of the
metrics to the MDA

• eLicensing Manager - The NSSO establishes the e-
Licenses associated with a particular service instance in
the e-License Manager

• NFVO (5G Virtualized Infrastructure) – Instantiation of
service components in the virtual infrastructure

In a context of cross-domain e2e service:

• NSMM - Allocation of secure networking channels for
services spanning across different administrative domains

Creation of GST
A GST is created at the SM specifying the set of supported values
for each one of the considered attributes.

Yes

Creation of NEST
(and network slice
blueprint)

A NEST and associated network slice blueprint are created at the
SM

Yes

NEST-based
instantiation of RAN
slices

A slice instance is created at the SM based on the provided NEST
(and associated network slice blueprint). This would include
several interactions with underlying systems such as the VIM and
the RAN Controller.

Yes

Instantiation of
vertical services using
radio and edge
resources

Instantiate a service using a previously allocated slice including
radio access and edge resources (allocated through the SM
module). This would include several interactions with underlying
systems such as the NFVO.

Yes

Onboarding of
SOL006 based
descriptors

Onboard SOL006 based NSD packages through the NBI of the NSSO
into the NFVO catalogue. This would include several interactions
with underlying systems such as the NFVO.

Yes

4.3. Network Service Mesh Manager

The aim of the Network Service Mesh Manager (NSMM) is to secure the communication of an end-to-end
service deployed across different administrative domains. Such an operation is performed at orchestration
time and is explicitly requested by the NSSO which is also the solely consumer of the NSMM interface. In this
regard, the NSMM can be considered as an extension of the NSSO and fully part of 5GZORRO Orchestration
stack.

4.3.1. Main Functionalities

In order to secure communications of an end-to-end cross-domain service, the NSMM needs to interact with
different modules belonging to the 5GZORRO platform and also directly with the VIM (OpenStack), as
depicted in Figure 4-9.

Page 42 of 82

Figure 4-9: Network Service Mesh Manager interactions

The NSMM receives commands directly from the NSSO and is invoked only when a cross-domain connection
needs to be established. The securing operation is realized by properly configuring an instance of VPNaaS
module (see section 2.4) instantiated as a VNF at orchestration time. The VPNaaS instances are used as
communication gateways in each side of the VPN tunnel as depicted in Figure 4-10 while, the tunnel itself, is
established by using 5GZORRO stakeholder information and keys provided by the ID&P Manager.

Figure 4-10: VPN Secure link across two domains

The network service in Domain A is connected with the network service in Domain B through a VPN tunnel
where the respective instances of the VPNaaS works as gateway for the cross-domain network traffic. This
implies that the NSMM must offer a set of functionalities that allows the enforcement of specific
configurations enforced in both the VIM and VPNaaS instances.

In particular, the NSMM offers two main functionalities:

• OpenStack networking configuration
o Creation of the necessary OpenStack network resources to connect the Network Functions

in the Network Service. These resources are networks and subnets.
o Creation of OpenStack network resources to expose the gateway Network Function (VPNaaS

instance) to the outside world. This step basically consists of creating a virtual router
connected to the gateway and the floating network (assumed as the operator external
network), in order to be able to associate a Floating IP (i.e., Public IP) to that virtual machine.

• Cross-Domain connection securing
o Interaction with the ID&P to retrieve keys and DID, identification of the network and services

to be exposed to other domains, and VPNaaS instance configuration

When the NSSO needs to orchestrate a service which is part of an e2e cross-domain one, first requests the
NSMM to prepare the networking in the VIM, then instantiates the service along with the VPNaaS-based
gateway. At this point, the NSSO can request the NSMM to secure the cross-domain connection.

Page 43 of 82

4.3.2. Prototype Implementation

The NSMM prototype implements all the modules described in deliverable D4.4 [19] and both functionalities
previously mentioned to stich and secure services across multiple domains. The 5GZORRO GitHub repository
of the module is available at

https://github.com/5GZORRO/network-service-mesh-manager

The NSMM implements a request/response communication paradigm based on REST API and the NBI is
described and available at:

https://github.com/5GZORRO/network-service-mesh-manager/tree/main/api

Figure 4-11: NSMM Software architecture

As depicted in Figure 4-11, which describes the actual NSMM software architecture, the final prototype
interacts through a set of dedicated clients with the VIM, the ID&P and the local instance of the VPNaaS
gateway. The Network Manager (NM) and the Gateway manager (GM) are responsible for the preparation
of the network in OpenStack while the Gateway Config Manager (GCM) and the Secure Connection Manager
(SCM) are responsible for the establishment of the secure VPN-based cross-domain connection. In particular,
the NM creates the VIM networks and the dedicated subnets for the internal communication, the GM creates
and configures the VIM virtual router for the cross-domain connectivity, the GCM retrieves Keys and DID and
identify networks and services to be exposed to the other domains, and, finally, the SCM configures the
VPNaaS instance to establish the VPN tunnel.

The four managers interact with the Database (an instance of PostgreSQL) to guarantee the persistence of
the data (explicit arrows are omitted in the figure for the sake of readability). The NBI is specified in OpenAPI
format, as depicted in Figure 4-12.

https://github.com/5GZORRO/network-service-mesh-manager

Page 44 of 82

Figure 4-12: NSMM OpenAPI specification

The NSMM prototype has been implemented in Go [43] (Golang 1.17) using the main following libraries:

• gin-gonic/gin [44] v1.7.4 and deepmap/oapi-codegen [45] v1.9.0, to automatically generate the
server from the OpenAPI NSMM interface definition.

• Gorm [46] v1.22.5, ORM library for Golang.

• Postgres driver [47] v1.2.3 as database driver.

• gophercloud/gophercloud [48] v0.23.0, an OpenStack Go SDK.

The current prototype can be deployed on

• Kubernetes (using Helm)

• Docker (with docker-compose)

Both these deployments automatically start the NSMM and the database. The NSMM module can also be
manually compiled and executed on VM installing all the necessary dependencies and the Postgres Database.
More information can be found on the NSMM GitHub repository linked above.

4.3.3. Functional Tests

The Table 4-7 shows the Network Service Mesh Manager functional tests. The tests have been conducted in
both local machines and 5GZORRO testbed. For those functionalities that requires the interaction with
external modules i.e., ID&P, the related tests include also the integration tests with those modules.

Table 4-7: Network Service Mesh Manager functional tests

Name Description
Passed
(Yes/No/Partially)

Network resource
creation

The NSMM creates all the network resources for a Network
Service, these are basic internal networks of the Network Services

Yes

Page 45 of 82

and also network resources for the Gateway to enable external
exposure and connectivity.

Floating IP allocation
The NSMM allocates a floating IP to the Gateway VNF to enable
external exposure and connectivity.

Yes

VPNaaS
configuration

The NSMM configures the VPNaaS modules. This would imply the
request of information (DID and Keys) to the ID&P Yes

VPN connection
creation

The NSMM creates the VPN connection towards another domain
which expose a Gateway with a running and configured instance of
the VPNaaS module.

Yes

VPN connection
removal

The NSMM deletes the VPN connection toward another domain. Yes

Floating IP release
The NSMM releases the floating IP to the Gateway VNF to make it
no more reachable and exposed.

Yes

Network resources
removal

All the network resources of a Network Services created by the
NSMM are deleted.

Yes

4.4. E-Licensing Manager

The objective of the e-Licensing Manager (eLM) is to enable a trustworthy tracking of the usage of purchased
software components/xNFs, in real-time, providing prove of usage so the vendors/owners can materialise
revenues associated to licensing costs. It is designed to seamlessly integrate stakeholders to the 5GZORRO
ecosystem who want to either offer and consume xNFs or want to offer their virtualized infrastructure for
the orchestration and deployment of xNFs, resulting on a production-grade telecommunication framework
which will monitor the utilization of xNFs commercialized through the 5GZORRO Marketplace.

4.4.1. Main functionalities

Given the final design of the eLM, which was described in D4.4 [19], this section includes the main
functionalities of the eLM from the perspective of the software vendor as well as from the MANO
enhancements in a dynamic and multi-stakeholder ecosystem.

From the software vendor point of view, the eLM allows the commercialization of software components/xNF
with a wide range of business plans, including flat rates, pay-as-you-grow rates and subscription rates.
Enhanced by the capability of the eLM to monitor the usage and thus the compliance of the aforementioned
rates based on system metrics, such as uptime, or custom application-level metrics thanks to the eLM
interaction with the Data Lake and Cross-domain Analytics services of the 5GZORRO Platform. This has been
further elaborated on D3.3 [51] and D4.4 [19].

From the MANO point of view, the eLM offers a way to validate the compliance of a software component/xNF
respect to a Smart Contract that clearly states what are the conditions and limitation of its use. Before the
xNF is instantiated, the eLM will verify that the license is valid for a given administrative domain and that the
limits will not be surpassed considering previous and active uses from other participating stakeholders on
the 5GZORRO ecosystem. Then, during the lifetime of the xNF, the eLM will monitor in real time its usage
based on the configured metrics as to offer a prove of usage on the smart contract.

4.4.2. Prototype implementation

This section shows the implemented prototype and technologies used to realize the design shown in D4.4
[19]. The eLM has been updated in the latest phase to become a decentralized component which relies in
the Integration Fabric of the Platform to synchronize instances of the eLM in different administrative domains.
Each of these instances is referred to as an eLM Agent (eLMA) deployed as a cloud-native microservice-based

Page 46 of 82

application using Helm. This contributes to the flexibility of the 5GZORRO Platform, the profile of actors and
installation procedures, further explained in section 6.

All of the internal microservices of eLMA have been developed using Python 3.8 and standard libraries such
as flask, connexion[swagger], pika, request, kafka_python and schedule while the business logic and core
operations are kept in an independent library developed externally as part of the asset’s development
program of ATOS.

Some key characteristic considered during the implementation include a small footprint, cross-stakeholder
monitoring of licenses usage, and a dynamic plugin-driven configuration. This last feature is achieved by
customizing environment variables in the helm chart which then installs the appropriate plugin and
additionally ensures connectivity to the different components that the eLM needs to interact with as to
provide its functionalities. This applies to the interface with the underlaying infrastructure and the NFV
orchestration of the 5GZORRO Platform, the eLM has been tested on a fully cloud-native infrastructure using
Kubernetes and the ISSM-MEC component of 5GZORRO and on an infrastructure based on Openstack, the
ETSI Open-Source MANO (OSM) and the NSSO component of 5GZORRO.

Furthermore, the eLM has been designed to best reflect the business plan of xNF vendors by allowing a highly
customizable drafting of the licenses in terms of granularity of configuration and monitoring. This design has
been reported in D3.2 [49] and D3.3 [51].

D4.4 [19] included the definition of the functional blocks of the eLM (see also Figure 4-13) as well as the main
interfaces with other components of the 5GZORRO Platform.

Figure 4-13: eLM microservices and functional blocks

The current prototype of the eLM complements the previous information with details on the technologies
used:

• Each eLMA is deployed in the infrastructure of a 5GZORRO participant as a collection of loosely coupled
microservices (light blue boxes in Figure 4-13) preferable in a Cloud-Native environment such as
Kubernetes using Helm, although it has been tested using docker-compose in a single VM too.

• In terms of communications, it follows a request/response paradigm (based on REST) for synchronous
internal workflows and for the interaction with most of the additional components of the 5GZORRO
Platform. It additionally relies on a publish/subscribe paradigm (AMQP) for the handling of
asynchronous events related to the monitoring and usage of the xNFs and their associated licenses.
Events are handled via a RabbitMQ broker that is shared between several components of the 5GZORRO
Platform, in particular, this broker is used to notify the Marketplace Portal about a license violation
that has just happened and that is being processed by the Platform.

Page 47 of 82

• The source code, as well as thecomplete list of requirements and the installation scripts and
documentation is available within the 5GZORRO GitHub at:

https://github.com/5GZORRO/elicensing-manager-agent.

In terms of storage and resources, the eLMA is designed to be light and stateless for all of its internal
microservices while it relies on a NoSQL database to persist the monitored xNFs and the metrics
associated to the compliance of the licenses. For this, a MongoDB has been chosen.

• The eLM makes use of the OpenAPI specification for the REST endpoints which are accessible within
the cluster or through the exposed service under <eLMA-URL>:<eLMA-PORT>/ui, where eLMA-URL
and eLMA-PORT are fully configurable via its deployment scripts.

4.4.3. Functional tests

In this section the tests that have been performed to the e-Licensing Manager components are presented
These tests are further demonstrated in section 5.3.1, where the internal call flows of an end-to-end scenario
are shown.

While the first four tests shown in Table 4-8 can run in isolation from the rest of the 5GZORRO Platform using
pytest and mocking the external dependencies, the remaining have been carried out at the 5GZORRO
Barcelona Testbed. In said testbed, the components that are required for each test are described in the
corresponding description.

Table 4-8: E-Licensing manager functional tests

Name Description
Passed

(Yes/No/Partially)

Test_registration_simple_PO
Test for the registration of a Product Offering with a
single PO Price in the ELMA.

Yes

Test_registration_bundled_PO
Test for the registration of a bundled PO where each
internal PO has an additional POP

Yes

Test_registration_PO_error
Registration test of faulty POs which include non-existent
references in the marketplace, missing POPs, invalid xNF
references in the POPs

Yes

Test_watcher Test for the watcher creation/deletion/update Yes

Test_osm_interface

Test for the communication between the eLMA and the
MANO via the xRM component. It includes:

• Login

• Get_descriptors

• Get_instance_status

• Describe_instances

• Create_subscription

• Remove_subscription

Yes

Test_cross_domain_interface
Test that the cross-domain communication can stop an
instantiation if the limits on the license usage are
surpassed

Yes

Test_interfaces
Integration test with the NSSO, Marketplace catalogue,
Marketplace Portal, Data Lake, xRM, SCLCM. These tests
are further elaborated in Section 5.3.1

Yes

https://github.com/5GZORRO/elicensing-manager-agent

Page 48 of 82

5. Module integration for zero-touch service
management prototype

This section presents the integration strategy implemented for the realization of a comprehensive 5GZORRO
Zero-touch service management prototype with security and trust features, based on the various module
prototypes described in previous sections.

As introduced in D4.2 [1], the integration strategy adopted by 5GZORRO leveraged on the organization of the
whole software development and integration work in teams, each in charge of specific areas of the 5GZORRO
Platform. Such strategy facilitated the implementation and integration of the different parts building the
5GZORRO Platform by fostering cross-WP interactions.

In order to further improve the defined methodology, the initially established teams have been refurbished,
and now are as listed below:

• TEAM #A – TELECOM MARKETPLACE: Mainly encompasses modules from Work Package 3; includes
the e-Licensing Manager.

• TEAM #B – ZERO-TOUCH SLICING: This team tackles modules such as ISSM Workflow Manager, ISSM-
MEC, ISSM-O, 5G-TRMF, NSSO and xRM.

• TEAM #C – SLA-DATALAKE: Shares the same modules from TEAM #B, excluding the 5G-TRMF.

• TEAM #D – E2E SECURITY: This team focuses on security-centric modules such as NSMM, VPN-as-a-
Service, SAS, TEE and 5G-TRMF.

• TEAM #Z – TESTBED: Provides & maintains the required infrastructure to host the previously
mentioned software components of 5GZORRO.

Similar to the previous team #6 described in D4.2 [1], team #Z will continue the work on the deployment’s
front. Furthermore, Teams #B, #C & #D focused on continuing the integration efforts of the previous Teams
#3, #4 and #5, respectively, which are in scope with elements described in this deliverable, whereas Team #A
encapsulated the work being made on the previous Teams #1 .

5.1. Integration scenario overview

As introduced in D4.2 [1], part of the integration strategy was to create a scenario to be followed by the
various development teams, and use said scenario as a storyline to drive the integration of all software
components that constitute the 5GZORRO platform. Since there were no issues found between the
established integration scenario in D4.2, and all the work performed thus far, the phases remain unchanged.

Likewise, the scenario carries over from D4.2 [1] following these steps:

• Creation of a resource/service offer by an authorized stakeholder.

• Publication of the offer in the marketplace.

• Post-deployment optimizations performed in a Zero-touch manner.

The high-level steps of the integration scenario followed by the software development teams can be checked
in Figure 5-1.

Page 49 of 82

Figure 5-1: High-level steps followed by the Teams for the integration scenario

5.2. Zero-touch network slice orchestration

The overall technical approach of the zero-touch network slice orchestration integration scenario has
remained the same as was previously reported in D2.3 [17] with workflows 3-6, 3-7, 3-10 guiding our efforts
on the end-to-end integration. One major addition to the integration activities is involved with adding extra
flexibility to the end-to-end operation of the components. More specifically, rather than always having fully
automated flows always starting from high-level intents for a slice or a service, we found it useful to trade
full automation for extra flexibility through the manual process if needed. For example, Product Offers can
be acquired asynchronously by a 5GZORRO persona and then at a later stage, when Product Orders that were
obtained by acquiring the corresponding product offers need to be combined and instantiated or instantiated
and scaled out. Thus, a long management flow of ISSM might need to be split into shorter ones, e.g., we need
to provide a flow that starts with the product order (that was created already) and instantiate or scale-out
them. To that end, we have implemented the corresponding ISSM flows, integrated them with the 5GZORRO
Portal and successfully demonstrated them for all three Use Cases in the context of the project demos
showcased at EUCNC’22.

Another major integration effort included developing and implementing a methodology that allows ISSM to
seamlessly expand its orchestration flows to include the Product Offer specific orchestration for instantiation
and scale-out. More specifically, when Product Orders are being mixed and matched from the portal to create
composite services, we require one service to be the main product order and the rest to be subordinate
Product Orders. Furthermore, the Product Offer corresponding to the main Product Order contains a
reference to the service specific NFVO that contains the logic for instantiate and scale-out entry points. This
way, when a service being created through the portal from Product Orders, the service orchestration is
automatically added to ISSM.

Finally, since ISSM-WFM design became fully distributed and symmetric to better fit the 5GZORRO approach,
we performed regression tests to ensure quality after the changes to ISSM-WFM have been implemented.

Business Level
Orchestration /

Optimization

Resource/Service
Orchestration

Resource/Service
Monitoring

Data Collection

Data Analysis

Page 50 of 82

5.2.1. Integration tests and results

The prototypes that were previously validated under own premises testbeds, such as for integration between
ISSM and NSSO to enable slice instantiation per request, have been fully ported to the 5GZORRO’s testbed
infrastructure.

Also, as part of the advancements made since the writing of D4.2 [1], MDA was integrated with the
orchestration-centric software components across all of 5GZORRO’s testbed environments, being able to
receive configurations from the NSSO component (REST API) in its designated Operator domain, fetch metric
data from ETSI OSM accordingly, and push data to the testbed’s Data Lake.

Table 5-1 list the set of tests performed to validate the set of functionalities implemented by the ISSM & the
NSSO tackling some integration steps, whilst Table 5-2 details MDA’s functional tests related to the
integration steps:

Table 5-1: ISSM-NSSO functional test set

Name Description
Passed
(Yes/No/Partially)

Process slice request ISSM-WFM receives a “slice instantiation” request Yes

Request resource
instantiation

ISSM -WFM requests resource instantiation from NSSO
Yes

Generate
instantiation

NSSO runs instantiation
Yes

Generate
instantiation

NSSO completes instantiation
Yes

Configure Vertical
Slicer virtual
resources

Slice setup with gNodeB connected to 5GCore
Yes

Table 5-2: MDA functional test set

Name Description
Passed
(Yes/No/Partially)

Start Aggregate
Metric

NSSO propagates configuration with dynamic variables to MDA
Yes

Read Metric Data MDA fetches metric values from OSM Yes

Aggregate
Monitoring Data

Aggregation of metric data by the MDA component
Yes

Signing Data Hash/signing data with PK from the Operator with SHA256 and
RSA algorithm

Yes

Post Monitoring
Data

Post data into Data Lake (DL Kafka topics / REST API)
Yes

Now integrated with the Portal, a user can request an instantiation of a Network Slice by accessing the
‘Orchestration > ISSM’ tab, as shown in Figure 5-2. Figure 5-3 depicts the submitted information, triggered
by the portal, required for an instantiation of a Slice.

Page 51 of 82

Figure 5-2: Slice instantiation submission on the Consumer's Portal

Figure 5-3: 5G Slice submission info

While background operations run to setup the Network Slice, the Portal will be updating and displaying in
real-time the status of the instantiation, shifting from ‘Running’ to ‘Successful’ whenever it is completed
(Figure 5-4 and Figure 5-5):

Page 52 of 82

Figure 5-4: Slice instantiation running

Figure 5-5: Slice instantiation complete

Upon completion of the instantiation & setup of the slice, the data monitoring workflow can now start. This
requires that the NSSO, alerted about a slice instantiation by ISSM, sends a configuration to the MDA. To
aggregate metrics, this config needs some required fields for each metric, such as step, step_aggregation
and aggregation_method, Figure 5-6.

Page 53 of 82

Figure 5-6: Creation of monitoring configuration

Whenever the MDA receives a new configuration, the aforementioned component triggers a process to read
metric values from ETSI OSM (Figure 5-7), or other source, and this process relies on the Step key, which
represents a metric reading interval, saved into a database temporarily.

Figure 5-7: Requesting of configured metric and its value

The other automatic process performed together with the data collection phase is the application of
aggregations rules by using the step_aggregation field, where the read values are aggregated according to

Page 54 of 82

the aggregation_method. This aggregation method must include a valid operation, and to do so, one of these
methods needs to be provided: sum, average, count, max, min and stddev (standard deviation).

When ending the aggregation process, the final phase of the workflow corresponds to sending the
aggregated data to the Data Lake, where for that step there is the requirement of specifying the topic to send
the data, and two fields which contain the stored data, key and value. The key-value method is used to enable
the signature process, meaning that, included in the information sent, there is also an encrypted hash of
provided monitoring data, determined before in the MDA, using a key of the Resource Consumer.

Figure 5-8 showcases the Kafka topic, which was received in the configuration, with the stored aggregated
and processed data. The figure displays a list with entries structured with the previously described key and
value method, and with the timestamp during which the record arrived.

Figure 5-8: Storage of data on the Data Lake

5.3. E-Licensing control

Every software component or xNF onboarded in the 5GZORRO Marketplace as a resource or service offer
may include the tied licensing agreements associated, and with them, the definition of the costs derived from
the use of this software. This integration work aims to demonstrate the process that begins after the software
acquisition by any customer. From this moment, the xNF is ready to be onboarded, deployed and managed
by the platform.

The e-Licensing control configuration is triggered with the purpose of obtaining the relevant information
about the use of the software component, in accordance with the agreements that have been signed.
Stamping this usage in the blockchain.

Figure 5-9 depicts the complete workflow of the license configuration from the registration to the scheduled
monitoring showing the different components involved.

Page 55 of 82

Figure 5-9: E-License configuration workflow

Before the steps shown in Figure 5-9, the software component/xNF vendor, consumer, the ISSM and
Marketplace have already onboarded and configured a valid Order that links Product Offerings (POs), e-
licenses and PO Prices:

1. Either the NSSO, in the case the orchestration uses an underlying NFV orchestrator, or the ISSM-MEC,
in the case the orchestration is fully Cloud-Native, informs the eLM about a new xNF instance that is
in the process of being instantiated with a PO. The endpoint for this step and the response on step
5 and 6 are defined in an OpenAPI specification in GitHub [38].

2-4. The eLM performs validations at instantiation time which includes fetching the licenses and
specifications from the Marketplace, the synchronization with neighbouring instances of the eLM
and the creation of the watcher processes that will be monitoring the instance and any internal
service that include a license.

5. In the event of steps 2-4 showing that the xNF cannot be instantiated, the NSSO or ISSM-MEC is
informed to abort the instantiation. The workflow would stop here.

6-7 The instantiation is accepted and is completed by the NSSO or ISSM-MEC.

At this point, the eLMA (eLM Agent in each specific domain) has created and configured all the relevant
watcher processes to continuously monitor the usage of the instances.

Page 56 of 82

8. Each watcher starts its monitoring sequence by requesting the last known status of an instance to
check if an event has changed it since the last check.

9. Metrics related to the license are obtained. Tests have been carried out for the case of uptime,
number of instances and number of active users (application metric). This is used to validate the
limits stablished on the license to ensure that the instance is still compliant.

10. Either by a license violation or as a scheduled update of the DLT, an action representing the
relationship between the instance, a PO, a POP and the current status of the associated metrics is
sent out. In the first case or if the action is not correctly persisted in the DLT, the eLMA will alert all
the interested parties and request the downstream workflow for such event in the SCLCM.

5.3.1. Integration tests and results

The eLM has been integrated with additional components from the 5GZORRO platform with respect to what
was described in the previous version of this deliverable (D4.2 [1]). New interactions with the Marketplace
catalogue and portal, the ISSM-MEC and the Data Lake have been implemented, which is reported in Table
5-3.

Table 5-3: e-License Manager integration tests

Name Description
Passed
(Yes/No/Partially)

Kubernetes
deployment

Helm based deployment of the eLM in the BCN testbed
Yes

Multi-domain
communication of
eLM

Communication of eLM instances on different administrative
domains Yes

Registration of
bundled product
offering

Registration of the licenses for an order composed of a bundled
product offering from different resource vendors Yes

Extension of NS to a
second domain

License check to allow the instantiation of a second NS using the
same licenses

Yes

License restriction
breach

Attempt to instantiate the same NS more times than the ones
allowed by the licenses

Yes

License expiration Detection and notification of the expiration of a license Yes

License for a VNF Integration with the NSSO to monitor the usage of a VNF in OSM
and Openstack

Yes

License for a CNF Integration with the ISSM-MEC to monitor the usage of a CNF in
kubernetes

Yes

In addition, the eLM has been improved to be deployed in a cloud-native environment using Helm and
Kubernetes. Figure 5-10 shows the running pods that build up an instance of the eLM Agent on each
administrative domain which correspond to the namespaces domain-operator-a and domain-operator-b in
the figure. This is consistent with what was introduced by Figure 4-13 with the addition of the internal
database (elmadb) and the Rabbitmq broker (elma-rabbitmq) which is shared with other modules of the
platform. Being the elmarest pod the entry point to the eLM on each domain, it is exposed using a nodeport
service with a fixed port 30880 for domain-operator-a and 31880 for domain-operator-b. This will help
understand the logs shown in this section.

Page 57 of 82

Figure 5-10: Pods of the e-License Manager

On the orchestration part, the interface between eLM and NSSO has not changed and is available in D4.2 [1],
while the internal models and technologies of the eLM have been updated during the migration to a fully
decentralized architecture and have been reported in D4.4 [19] and D3.3 [51]. The interface with the ISSM-
MEC to support a fully cloud-native infrastructure uses the same endpoints and call flows as the NSSO.

During the registration of the offerings and prices in the eLMA of domain-operator-a, it will contact other
eLMAs in neighboring administrative domains through the integration fabric. Figure 5-11 shows the
interaction between two eLMAs which confirm to each other that the services and resources comply with
the licensing limits, terms and conditions in an aggregated way. In this example, the e-licenses included a
limit on the number of instances or the service that are allowed, this is configured using the
MaxNumberInstances advanced option in the portal as explained in D3.3 [51].

Figure 5-11: eLM restriction check success

The interface between the Marketplace catalogue and the eLM has been extended to support bundled
products offers inside an order. This feature has been explained in detail in D3.2 [49] and results in the
registration of all the licenses that are linked to the bundled offer and thus the creation of individual watchers
for each one of them by iterating with the catalogue’s API. Figure 5-12 show the internal database of the
eLMA after the registration of a bundled order of a NS (5gzorro_cdn_edge_sec-ns) composed of 3 different
VNFs (5gzorro_security_sas-vnf, vTAP_final-vnf and 5g_zorro_cdn_edge_sec-vnf) each one with its own
pricing model (name of the product offering price appends a “_POP” to the name of the corresponding
service or resource).

Page 58 of 82

Figure 5-12: Bundled offering registration on the eLM[GB1][AFDG2]

With the objective of extending the number of vendor’s business plans compatible with the eLM, e-licenses
can be configured to base its monitoring and pricing on application-level metrics in the same way as they can
be used to drive the SLA monitoring framework of the 5GZORRO ecosystem.

The test continued by extending the coverage of the service on the domain-operator-b which was still
permitted under the restrictions configured in the licenses (only 2 instances allowed). Then a new
instantiation of the service was requested in the original domain to evaluate the response of the eLM in that
scenario, Figure 5-13 show that the eLM finds out that if the new instances is not allowed in its own domain
(having 2 then). Then, the aggregated compliance with the restriction would be breached and thus sends
back a negative response to the NSSO so that it does not continue with the instantiation of the new service.
This would correspond to the call flow number 5 from Figure 5-9.

Page 59 of 82

Figure 5-13: eLM restriction check failure

An additional interface of the eLM allows the publication of e-license breaches to interested actors, in this
case, the portal is able to show a pop-up on the UI in the event of one of the licenses having expired. For
demonstration purposes one of the licenses was set manually to expire shortly after the instantiation of the
NS, the feedback received at the Marketplace Portal is shown in Figure 5-14.

Figure 5-14: e-License expiration in the portal

The expiration of a license also triggers the delivery of an action to be recorded on the DLT. This is shown on
the logs of the elmamq pod from Figure 5-15 which is the one handling all events raised by the watchers.

Figure 5-15: eLM action after expiration of license

Page 60 of 82

5.4. Data-driven actuation

The provisioning of a product offer (e.g. a network slice) to an operator through 5GZORRO components,
creates a Service Level Agreement (SLA) contract. The SLA contains the quantifiable metrics of the virtual
resource that have been agreed upon, called Service Level Objectives (SLO). The creation of the SLA initiates
a workflow whose purpose is to trigger a data pipeline that predicts the future values of those SLOs
throughout the lifecycle of the SLA, using Machine Learning algorithms. To that end, the following 5GZORRO
components are involved:

• Intelligent Slice & Service Manager (ISSM)

• Monitoring Data Aggregator (MDA)

• Smart Contract Lifecycle Manager (SCLM)

• Data Lake

• Intelligent SLA Breach Prediction module (ISBP)

The workflow is visible in Figure 5-16.

Figure 5-16: SLA Breach prediction workflow

Once the slice is provisioned, the MDA starts collecting monitoring data, and sends them to the Storage
Service located in the Data Lake of 5GZORRO. Concurrently, the ISSM sends the SLA to a different message
queue also located in the Data Lake. The ISBP, which interacts with the Data Lake and awaits messages from
its message queues, parses the message containing the SLA and creates a pipeline that generates future
predictions of the SLO metric, based on the monitoring data of the slice. The predictions are generated by an
AI model that has been trained on data similar to the ones it is predicting. The ISBP also includes functionality
that enables the re-training of the AI model if the accuracy of its predictions falls under a given threshold.
Finally, if the generated prediction is above the threshold dictated by the SLA, it is packaged in a notification
message and pushed to a message queue. This notification can be then picked up by the Intelligent Slice and
Service Manager component of 5GZORRO that can then take action to prevent contract breach.

Page 61 of 82

The architecture of the components mentioned above can be seen in Figure 5-17. The MDA and the ISSM,
are not part of the Data Lake and interface with the Storage Services and a message queue to push monitoring
data and the SLA events respectively. Accordingly, the Data Lake maintains several message queues in order
to implement a stream-based service. As can be seen, each queue stores different kind of data.

Figure 5-17: ISBP Architecture

The ISBP is located within a Docker container and has connections to the message queues, but also exposes
a REST API, implementing a limited number of functions. The Prediction and Training modules are ephemeral
containers whose lifecycle depends only on the duration of the task they have to complete. The launching of
these containers is triggered by events fired by the creation of the files containing the data for the prediction
and model training respectively. Upon completion, the Prediction module sends the generated prediction to
the ISBP using a simple HTTP request, whereas the Training module stores the new model to the Data Lake
storage.

5GZORRO Grant Agreement No. 871533 Deliverable D4.3 – version v0.0

Page 62 of 82

5.4.1. Integration tests and results

The following tests have been conducted in the 5GBarcelona testbed both individually and during end-to-
end trials, as listed in Table 5-4.

Table 5-4: Intelligent SLA Breach Predictor functional test set

Name Description
Passed
(Yes/No/Partially)

Start ML pipeline Trigger a ML pipeline upon new SLA activation Yes

Generate
predictions

Generate predictions continuously on the incoming data stream
Yes

Notify upon SLA
violation prediction

Trigger a notification message and dispatch it to the relevant
components when a SLA violation is predicted

Yes

Terminate ML
pipeline

Terminate pipeline when SLA is concluded/terminated
Yes

The ISBP component and Prediction/Training modules have been developed and tested in local ICOM
premises with a local installation of Apache Kafka as the message queue ISBP connects to. The tests involve
an existing dataset consisting of metrics acquired from one of ICOM’s servers. These metrics include the
server bandwidth, cache hits and request per minute. The data is pushed to Kafka which simulates the
workflow discussed above. The results with the ephemeral containers mentioned previously can be seen in
Figure 5-18.

Figure 5-18: ISBP containers

The integration of these components with the rest of the components of the Data Lake, i.e. the message
queues and other aspects of the Storage Services is completed. Another component that interacts indirectly
with ISBP is the Intelligent Slice and Service Manager (ISSM), as indicated in Figure 5-17. More specifically,
when a new SLA is activated and the respective service is instantiated, the ISSM sends an SLA event to the
Integration Fabric (see Figure 5-19). This event is captured by the ISBP (Figure 5-20), which then starts
gathering data and generate predictions (Figure 5-21). In the example shown in the figures, a CDN slice is
monitored and the metric used is the number of requests, as defined in the SLA.

Page 63 of 82

Figure 5-19: ISSM creates an SLA event and pushes it to integration fabric

Figure 5-20: ISBP receives the new SLA event

Figure 5-21: ISBP gets monitoring data and generates predictions

Page 64 of 82

When the ISBP predicts that the monitored metric will exceed the defined threshold (Figure 5-22), it
generates a breach prediction notification and pushes it to the Integration Fabric, so that the ISSM will receive
it (Figure 5-23). After that, the ISSM initiates the processes that will allow the avoidance of the SLA breach.
For example, it may trigger the extension of the service and/or the network slice.

Figure 5-22: ISBP predicts an SLA breach

Page 65 of 82

Figure 5-23: ISSM gets the SLA event

Page 66 of 82

6. Installation procedures

As the development phases of the 5GZORRO software components kept increasing, the need to standardize
some modules’ installation and deployment complexities, due to partners building frameworks in-house, has
surged as a key attention point. Since the established project development teams have been working on a
continuous delivery approach, consolidating and aligning installation and deployment steps for all different
elements of the platform is crucial to ensure reduction on deployment effort and time.

To serve as basis for the infrastructure of the platform, achieving a high-level of scalability, the Kubernetes
system was chosen to enable cluster building of several parts of the platform. It also provides monitoring
mechanisms which allow the overview of requirements of applications and resources, and the orchestration
of data storage.

According to the installation procedures described in Deliverable D3.2 [49], the components are organized
into profiles depending on their specific platform usage scenarios. These are:

• Cross-domain platform profile: Assigned to software components that enable common workflows in
5GZORRO.

• Administrator profile: Dedicated to components used for governance-centric operations and other
tasks related to governance activities.

• Trader profile: A profile which represents a common Stakeholder participating in the 5GZORRO
ecosystem. It uses components that enable resource & service provisioning, as well as consumption
activities.

• Regulator profile: Corresponds to all software components used by a Stakeholder of the platform
with the regulator role.

For the software components and prototypes reported in this document, the Cross-domain and the Trader
profiles are the ones to be applied to them during the installation phase. More information in regards to
deployment approach and profile establishment can be found in the deliverable D3.2 [49].

6.1. Cross-domain profile

This profile includes the components of the platform that provide zero-touch automation services and should
be deployed as a pre-requisite dependency to all the other profiles. The profile includes, in particular:

• ISSM: Responsible for executing orchestration workflows in a context of a business transaction, such
as extending a slice across a second domain, in cooperation with the Network Slice and Service
Orchestration.

• ETSI OSM: Orchestration stack that enables Virtualized Network Function deployments by
configuring associated information models.

6.2. Trader profile

The Trader profile comprises the components required for slice & service management, in order to allow the
zero-touch automation services to acquire security and trust capabilities in multi-tenant and multi-
stakeholder environments. This profile includes, in particular:

• 5G-enabled Trust & Reputation Management Framework: Manages the computation of trust values
among different stakeholders based on a trust-chain established with entities.

Page 67 of 82

• VPN-as-a-Service: Establishes secure and trusted connections between different domains in the
5GZORRO environment.

• NSSO: Responsible for the end-to-end vertical service management, handling the decomposition and
mapping of the service into network slices and network slice instances across multiple domains.

• NSMM: Enables secure connection establishment between slices/network services.

• xRM: Interacts with the underlying 5G Virtualized Platform to enable resource monitoring and
management

• eLicensing Manager: Provides operators and software vendors/consumers the mechanisms to
control the usage of the vendors’ software products.

6.3. Components mapping

Table 6-1 displays the deployment configurations of the different profiles with respect to the components
described in this document.

Table 6-1: Zero-touch service management components required per stakeholder role

 Cross-
domain

Admin Regulator Trader

ISSM X

5G-enabled Trust & Reputation
Management Framework (5G-TRMF)

 X

VPN-as-a-Service X

NSSO X (NSSO-VS)

NSMM X

xRM X

eLM X (core) X (agent)

ETSI OSM X

Page 68 of 82

7. Conclusions

This deliverable reports on the final activities related to implementation and integration works performed
with the modules that constitute the 5GZORRO platform in support of the zero-touch service management
capabilities with security and trust. The document has taken basis from the final design of the related
platform components reported in D4.4 [19], as well as from the preliminary prototypes delivered with D4.2
[1]. On top of these, and reports the final evolutions and updates implemented to provide full functioning
zero-touch service management components integrated in the 5GZORRO platform. In practice, the document
collects supported functionalities and prototype implementation details of the software produced in WP4,
with links to available documentation and code repositories related to the various components released on
GitHub.

The latest integration work amongst the partners has resulted in new validation tests which can be found
structured across the sections of this document tackling zero-touch orchestration, slice instantiation and
data-driven operation automation, security and trust orchestration, e-licensing control and management.

As a result of the progress shown from the implemented integration methodology, the previous setup of the
development teams has been further improved, with the goal of aiding and supporting the integration
activities among the involved parties, improving focus, and bringing them more closely to the overall scope
of the integrations.

In summary, the software prototypes described in this document corresponds to the final release
consolidated in the context of WP4. Any fixes and adaptations on the various modules derived from ongoing
and subsequent integration and validation activities carried out in WP5 (Validation through Use Cases), will
be applied when required as updates to the software code and documentation material included in
corresponding GitHub repositories.

Page 69 of 82

References

[1] 5GZORRO Consortium, Deliverable D4.2 - Intermediate prototype of Zero Touch Service Mgmt with
Security and Trust.

[2] Xiong, L., & Liu, L. (2004) - Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE transactions on Knowledge and Data Engineering, 16(7), 843-857.

[3] SCONE – A secure container environment - https://scontain.com/index.html?lang=en.

[4] Intel Software Guard Extensions – https://software.intel.com/content/www/us/en/develop/topics/
software-guard-extensions.html.

[5] Azure Cloud – SGX powered Servers - https://azure.microsoft.com/en-us/blog/dcsv2series-vm-now-
generally-available-from-azure-confidential-computing/ Accessed 27 January 2021.

[6] Zeek network security monitor - https://zeek.org/.

[7] Filebeat log shipper - https://www.elastic.co/beats/filebeat.

[8] Elasticsearch search and analytics engine - https://www.elastic.co/elasticsearch/.

[9] Kibana - https://www.elastic.co/kibana.

[10] Flask - https://flask.palletsprojects.com/en/1.1.x.

[11] Gevent Python networking library - http://www.gevent.org/.

[12] Werkzeug WSGI server - https://werkzeug.palletsprojects.com/en/1.0.x/.

[13] Haga, S., Esmaeily, A., Kralevska, K., & Gligoroski, D. (2020, November) - 5G Network Slice Isolation with
WireGuard and Open Source MANO: A VPNaaS Proof-of-Concept. In 2020 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN) (pp. 181-187). IEEE.

[14] Bollapragada, V., Khalid, M., & Wainner, S. (2005) - IPSec VPN Design. Cisco Press.

[15] Feilner, M. (2006) - OpenVPN: Building and integrating virtual private networks. Packt Publishing Ltd.

[16] 5GZORRO Consortium, Deliverable D2.4 – Final design of the 5GZORRO Platform for Security & Trust.

[17] 5GZORRO Consortium, Deliverable D2.3 – Update Design of the 5GZORRO Platform for Security & Trust.

[18] ETSI MEC - https://www.etsi.org/technologies/multi-access-edge-computing.

[19] 5GZORRO Consortium, Deliverable D4.4 - Final Design of Zero Touch Service Management with
Security and Trust Solutions.

[20] free5GC - https://www.free5gc.org/.

[21] CPLEX - http://www.cplex.com/.

[22] GUROBI - http://www.gurobi.com/.

[23] GLPK - http://www.gnu.org/software/glpk/glpk.html.

[24] CBC - https://github.com/coin-or/Cbc.

[25] MOSEK - https://www.mosek.com/.

[26] XPRESS - https://www.fico.com/es/products/fico-xpress-solver.

[27] CHOCO - https://choco-solver.org/.

[28] MIPCL - http://mipcl-cpp.appspot.com/.

Page 70 of 82

[29] SCIP - https://www.scipopt.org/.

[30] TM Forum - https://www.tmforum.org/.

[31] Gravitee - https://www.gravitee.io/.

[32] GS NFV-IFA 014 - https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-
IFA%20014v4.2.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf.

[33] ETSI GS NFV-SOL 006 V3.3.1 (2020-08): Network Functions Virtualisation (NFV) Release 3; Protocols and
Data Models; NFV descriptors based on YANG Specification.

[34] 5GCity – A distributed cloud & radio platform for 5G Neutral Hosts - https://www.5gcity.eu/.

[35] Network Slice Blueprint Definition - https://www.ngmn.org/wp-content/uploads/
160113_NGMN_Network_Slicing_v1_0.pdf, page 6.

[36] NXW slicer, 5GZORRO-core-1.0-alfa release, https://github.com/nextworks-it/slicer/tree/5gzorro-core-
1.0-rc.

[37] MDA OpenAPI specification, https://github.com/5GZORRO/mda/blob/main/doc/openapi.json.

[38] E-Licensing OpenAPI specification, https://github.com/5GZORRO/elicensing-manager-
agent/blob/master/elicensemanageragent/swagger.yaml.

[39] OSM - https://osm.etsi.org/

[40] Slice Manager GitHub space -https://github.com/5GZORRO/slice-manager.

[41] NSMM GitHub space - https://github.com/5GZORRO/network-service-mesh-manager.

[42] NSMM NBI - https://github.com/5GZORRO/network-service-mesh-manager/tree/main/api.

[43] Go - https://go.dev/.

[44] Gin Gonic - https://gin-gonic.com/.

[45] Codegen - https://pkg.go.dev/github.com/deepmap/oapi-codegen/pkg/codegen.

[46] GORM - https://gorm.io/index.html.

[47] PostgreSQL JDBC Driver - https://jdbc.postgresql.org/.

[48] Gophercloud - http://gophercloud.io/.

[49] 5GZORRO Consortium, Deliverable D3.2 - Prototypes of evolved 5G Service layer solutions.

[50] 5GZORRO GitHub space - https://github.com/5GZORRO.

[51] 5GZORRO Consortium, Deliverable D3.3 - Final design of the evolved 5G Service layer solutions.

[52] eLM OpenAPI - https://github.com/5GZORRO/elicensing-manager-
agent/blob/master/elicensemanageragent/swagger.yaml.

[53] 5GZORRO Consortium, Deliverable D4.1 - Design of Zero Touch Service Management with Security &
Trust Solutions.

[54] 5GZORRO Consortium, Deliverable D3.1 - Design of the evolved 5G Service layer solutions.

[55] Kubernetes -https://kubernetes.io/.

[56] ETSI OSM MANO orchestration framework - https://osm.etsi.org/.

https://github.com/5GZORRO/elicensing-manager-agent/blob/master/elicensemanageragent/swagger.yaml
https://github.com/5GZORRO/elicensing-manager-agent/blob/master/elicensemanageragent/swagger.yaml
https://github.com/5GZORRO
https://github.com/5GZORRO/elicensing-manager-agent/blob/master/elicensemanageragent/swagger.yaml
https://github.com/5GZORRO/elicensing-manager-agent/blob/master/elicensemanageragent/swagger.yaml

Page 71 of 82

8. Abbreviations and Definitions

8.1. Abbreviations

API Application Programming Interface

CLI Command Line Interface

DID Distributed Identifier

GST Generic Slice Template

MANO Management and Orchestration

MNO Mobile Network Operator

NBI North Bound Interface

NEST Network Slice Type

NFVO Networks Function Virtualization Orchestrator

NSI Network Service Instance

OSM Open Source MANO

PLMN Public Land Mobile Network

RAN Radio Access Network

REST Representational State Transfer

SBI South Bound Interface

SSID Service Set Identifier

TAP Terminal Access Point

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VPN Virtual Private Network

WP Work Package

WSGI Web Server Gateway Interface

Page 72 of 82

9. Appendix I – Trust Management Framework

9.1. 5G-TRMF Information Model

The redesigned information model of the 5G-TRMF is presented in Figure 9-1. In particular, it presents the
set of characteristics that are interpreted by the PeerTrust reputation model to generate a final score for
each trust computation request.

The Table 9-1, Table 9-2 and Table 9-3 present the related Information Models.

Figure 9-1 : UML diagram of 5G-TRMF

Table 9-1: 5G-TRMF Instance Information Model

trust

trustorDID: String
trusteeDID: String
offerDID: String

 history: List
directParameters: List

indirectParameters: List
credibility: Double

satisfaction: Double
transactionFactor: Double
communityFactor: Double

trustPrograpation: Boolean
reward_and_punishment_security: TriggerList

reward_and_punishment_SLA: TriggerList
trustEvaluation: AlgorithmList

<<role>>

trustor

trustorDID: String
trusteeDID: String
trustValue: Double

currentInteractionNumber: Integer
initEvaluationPeriod: TimeStamp
endEvaluationPeriod: TimeStamp

TrustInstance

trusteeDID: String
offerDID: String

trusteeSatisfaction: Double

<<role>>
trustee

type: String

offerDID

directWeighting: Double, userSatisfaction: Double
providerSatisfaction: Double, PSWeighting: Double

offerSatisfaction: Double, OSWeighting: Double
providerReputation: List of Double, offerReputation: List of Double

availableAssets: Double, totalAssets: Double
availableAssetLocation: Double, totalAssetLocation: Double

managedViolations: Double, predictedViolations: Double
executedViolations: Double, nonPredictedViolations: Double

consideredOffers: Double, totalOffers: Double
consideredOfferLocation: Double, totalOfferLocation: Double

managedOfferViolations: Double, predictedOfferViolations: Double
executedOfferViolations: Double, nonPredictedOfferViolations:

Double, InteractionNumber: Integer, totalInteractionNumber: Integer,

feedbackNumber: Integer, feedbackOfferNumber: Integer, location:

GeographicalAddressList, validFor: TimePeriod

directParameters

recommendationWeighting: Double
recommendations: RecommmendationList

indirectParameters

recommender: String
trustValue: Integer

recommendation_trust: Double
recommendation_total_number: Integer

average_recommendation: Double
last_recommendation: Double

recommendations

1 1

*

1..*

Page 73 of 82

Parameter Type Description

trustorDID String Unique identifier for a resource or service consumer.

trusteeDID String Unique identifier for a resource or service provider.

trustValue Double Current trust value assigned.

currentInteractionNumber Int Number of interactions between the trustor and the trustee.

initEvaluationPeriod TimeStamp The time when trust value was generated.

endEvaluationPeriod TimeStamp The time when trust value will be over and has to be
reassigned if required.

Table 9-2: Trustee Entity Information Model

Parameter Type Description

trusteeDID String Unique identifier for a resource or service provider.

offerDID String Unique identifier for a particular product offer of the provider.

type String Kind of offer (RAN, spectrum, VNF/CNF, slice, or edge)

trusteeSatisfaction Double Truestee’s satisfaction after x interactions with other providers.

Table 9-3: Trustor Entity Information Model

Parameter Type Description

trustorDID String Unique identifier for a resource or service
consumer.

trusteeDID String Unique identifier for a resource or service
provider.

offerDID String Unique identifier for a particular product offer.

type String Kind of offer (RAN, spectrum, VNF/CNF, slice, or
Edge)

history List (double) Set of trust evaluations about an entity.

directParameters List of key-value
features

Dictionary with direct trust data to calculate
trust level.

directWeighting Double Direct weighting parameter.

userSatisfaction Double Internal assessment of the service or resource
provided by a stakeholder (trustor).

providerSatisfaction Double Trustor satisfaction in a third-party provider
(trustee).

PSWeighting Double Weighting factor [0,1], PS + OS = 1

offerSatisfaction Double Trustor satisfaction in a particular kind of offer
of a third-party provider.

OSWeighting Double Weighting factor [0,1], PS + OS = 1

providerReputation List (double) Set of previous trust evaluations about a
provider.

offerReputation List (double) Set of previous trust evaluations about a
specific kind of offer of a provider.

availableAssets Integer The available assets (services and resources) of
the trusteeDID when the trustor is determining
the reputation.

totalAssets Integer The total assets of the trusteeDID when the
trustor is determining the reputation (active
and inactive).

availableAssetLocation Integer The available assets of the trusteeDID, at a
specific location, when the trustor is
determining the reputation.

Page 74 of 82

totalAssetLocation Integer The total assets of the trusteeDID, at a specific
location, when the trustor is determining the
reputation (active and inactive).

managedViolations Integer The total number of predicted SLA violations
that were finally managed successful,
associated with the trusteeDID.

Parameter Type Description

predictedViolations Integer The total number of predicted SLA violations
associated with the trusteeDID.

executedViolations Integer The total number of predicted SLA violations
that were finally managed unsuccessful
(violation), associated with the trusteeDID.

nonpredictedViolations Integer The number of SLA violations that were not
predicted and turned out to be SLA violations,
associated with the trusteeDID.

consideredOffers Integer The number of offers considered by the Smart
Resource and Service Discovery (SRSD), for a
particular type of offer, from the trusteeDID
when trustor is determining the reputation.

consideredOfferLocation Integer The available number of a particular offer type
from the trusteeDID when trustor is
determining the reputation.

totalOfferLocation Integer The number of offers considered by the Smart
Resource and Service Discovery (SRSD) for a
particular type of offer from the trusteeDID, at
a specific location, when trustor is determining
the reputation.

managedOfferViolations Integer The available number of a particular offer type
from the trusteeDID, at a specific location, when
trustor is determining the reputation.

predictedOfferViolations Integer The total offer number (for a particular kind of
offer) of predicted SLA violations that were
finally managed successful, associated with the
trusteeDID.

executedOfferViolations Integer The total offer number (for a particular kind of
offer) of predicted SLA violations associated
with the trusteeDID.

nonpredictedOfferViolations Integer The total offer number (for a particular kind of
offer) of predicted SLA violations that were
finally managed unsuccessful (violation),
associated with the trusteeDID.

interactionNumber Integer The total offer number (for a particular kind of
offer) of SLA violations that were not predicted
and turned out to be SLA violations, associated
with the trusteeDID.

totalInteractionNumber Integer Number of interactions carried out by the
trusteeDID with the other domains.

feedbackNumber Integer Number of feedbacks made by other providers
about the trusteeDID.

feedbackOfferNumber Integer Trustor satisfaction in a third-party provider
(trustee).

location List of
GeographicalAddress
objects

It constitutes a group of GeographicalAddress.

validFor TimePeriod The period for which this resource or service is
valid.

Page 75 of 82

indirectParameters List of key-value
features

Dictionary with indirect trust data to calculate
trust level.

recommendationWeighting Double Recommender’s weighting parameter(s).

recommendations List of
recommendations

Set of recommendation about a third entity
from one or more external entities.

Parameter Type Description

recommender String Unique identifier for a recommender.

trust_value Int Final trust score ranged from 0.0 to 1.0.

recommendation_trust Double Trust level of the trustor in the
recommendation.

recommendation_total_number Int Number of recommendations of a given trustee.

average_recommendation Double Average of all recommendations.

last_recommendation Double The last recommendation.

credibility Double Factor that determines how accurate the
recommendations are.

satisfaction Double Trustor satisfaction in a specific trustee.

transactionFactor Double Intra or inter-domain trust score and
parameterTuple propagation (0 means intra, 1
means inter)

communityFactor Double It indicates the triggers to recompute trust
score.

trustPropagation Double It identifies different evaluation algorithms.

reward_and_punishment_security List of triggers Increase or decrease score based on current
events such as security, time-decay, etc.

reward_and_punishment_SLA List of triggers Increase or decrease score based on current
events such as breach predictions and
detections, time-decay, etc.

trust_evaluation List of algorithms It identifies different evaluation algorithms such
as PeerTrust reputation model.

9.2. 5G-enabled Trust and Reputation Management Framework

Equations

9.2.1. General PeerTrust equation

The PeerTrust model is composed of a main equation that allows representing how a domain v can evaluate
the trust score of a domain u. In particular, the principal equation is as follow:

𝑇(𝑢) = 𝛼 ∗ (
∑ 𝑆(𝑢, 𝑖)𝐼(𝑢)
𝑖=1 ∗ 𝐶𝑟(𝑝(𝑢, 𝑖)) ∗ 𝑇𝐹(𝑢, 𝑖)

𝐼(𝑢)
) + 𝛽 ∗ 𝐶𝐹(𝑢)

where

• 𝛼 , 𝛽 depict weighting factors to be considered by the domain v. 𝛼, 𝛽 ∈ [0,1]and 𝛼 + 𝛽 =
 1. It is advisable that 𝛼 has a higher value than 𝛽.

• 𝐼(𝑢) is the total interaction number of domain u with the rest of domains.

• 𝑝(𝑢, 𝑖) denotes the rest of domains participating in the i-th interaction with the domain u.

• 𝑆(𝑢, 𝑖) represents the normalized value of satisfaction that the domain u obtains from 𝑝(𝑢, 𝑖) in its
i-th interaction.

Page 76 of 82

• 𝐶𝑟(𝑣) references the domain v's credibility has in the domain u's opinion.

• 𝑇𝐹(𝑢, 𝑖) is the context factor adapted on the i-th transaction of domain u.

• 𝐶𝐹(𝑢) indicates the context factor adapted on the community of entities to which the domain u
belongs.

9.2.1.1. Satisfaction equation

Once the principal equation has been introduced (see section above), each of the parts that make up the
main equation will be split into sub-equations to explain in more detail how each of the parameters is
evaluated. In particular, next equation defines the domain u's satisfaction on a product offer published by a
particular DPn the i-th interaction.

𝑆(𝑢, 𝑖) = 𝛾 ∗ 𝑃𝑆(𝑢, 𝑖) + 𝜑 ∗ 𝑂𝑆(𝑢, 𝑖)

where

• 𝛾, 𝜑 depict weighting factors to be considered by the domain u. 𝛾, 𝜑 ∈ [0,1] and 𝛾 + 𝜑 = 1.

• 𝑃𝑆(𝑢, 𝑖) is the satisfaction that the domain u has on the i-th domain (provider).

• 𝑂𝑆(𝑢, 𝑖) is the satisfaction that the domain u has on the i-th domain's offer.

• It should be pointed out that 𝑃𝑆(𝑢, 𝑖) + 𝑂𝑆(𝑢, 𝑖) = 1.

The provider's satisfaction of the domain u on the i-th interaction will be computed about the domain j
stakeholder.

𝑃𝑆(𝑢, 𝑗) = 𝑅𝑒𝑝(𝑢, 𝑗) ∗ ⨁𝑅𝑒𝑐(𝑥, 𝑗)

𝑛

𝑥=1

 ∗ 𝑇(𝑡−1)(𝑢, 𝑥)

where

• ⨁ is a aggregation operation such as Minimum value, Maximum value, Arithmetic mean, or
Harmonic mean. 𝑛 denotes the rest of domains participating in the x-th interaction with the domain
j.

• 𝑅𝑒𝑐(𝑥, 𝑗) is the recommendation of the x-th domain with which the domain j has a trust relationship.
In other words, 𝑇(𝑥, 𝑗).

• 𝑇(𝑡−1)(𝑢, 𝑥) is the last trust score that the domain u has on the domain x.

The 𝑅𝑒𝑝(𝑢, 𝑗) is the average reputation that the domain u has on the provider j based on all assets (service
and resources). This reputation contemplates features such as available assets, assets in a particular location,
and multiple time windows to compute these features along the provider j lifecycle.

𝑅𝑒𝑝(𝑢, 𝑗) = ∑𝜀(𝑘)

𝑛

𝑘=1

∗
(
𝐴𝐴(𝑗)

𝐼𝐴(𝑗)
 +

𝐴𝐴𝐿(𝑗)

𝐼𝐴𝐿(𝑗)
 + 2 ∗

𝑀𝑉(𝑗)

𝑃𝑉(𝑗)
 − 2 ∗

𝐸𝑉(𝑗)+𝑁𝑃𝑉(𝑗)

𝑃𝑉(𝑗)
) + 2

6

where

• ∑nk=1 represents the 𝑛 time windows established by the domain u.

• 𝜀(𝑘) depicts weighting factor to be considered by the domain u for each the time window 𝑘. 𝜀(𝑘) ∈
[0,1] and 𝜀1 +⋯+ 𝜀𝑛 = 1.

• 𝐴𝐴(𝑗) means the available assets of provider j when the domain u determined the reputation on
provider j.

• 𝐼𝐴(𝑗) depicts the total assets of the provider j when the domain u determined the reputation on
provider j.

• 𝐴𝐴𝐿(𝑗) means the available assets of the provider j, at a particular location, when the domain u
determined the reputation on provider j.

Page 77 of 82

• 𝐼𝐴𝐿(𝑗) depicts the total assets of the provider j, at a particular location, when the domain u
determined the reputation on provider j.

• 𝑀𝑉(𝑗) represents the total number of predicted SLA violations that were finally managed successful.

• 𝑃𝑉(𝑗) represents the total number of predicted SLA violations.

• 𝐸𝑉(𝑗) represents the total number of predicted SLA violations that were finally managed
unsuccessful (executed).

• 𝑁𝑃𝑉(𝑗) represents the number of SLA violations that were not predicted and turned out to be SLA
violations.

The provider's satisfaction of the domain u on the i-th interaction will be computed about a particular offer
of the domain j stakeholder.

𝑂𝑆(𝑢, 𝑜𝑗) = 𝑅𝑒𝑝(𝑢, 𝑜𝑗) ∗ ⨁𝑅𝑒𝑐(𝑥, 𝑜𝑗)

𝑛

𝑥=1

 ∗ 𝑇(𝑡−1)(𝑢, 𝑥)

where

• ⨁ is a aggregation operation such as Minimum value, Maximum value, Arithmetic mean, or
Harmonic mean. 𝑛 denotes the rest of domains participating in the x-th interaction with the domain
j.

• 𝑅𝑒𝑐(𝑥, 𝑜𝑗) is the recommendation of the x-th domain with which the domain j has a trust relationship

about a specific kind of offer (RAN, Spectrum, Edge, Slice, or VNF/CNF). In other words, 𝑇(𝑥, 𝑜𝑗).

• 𝑇(𝑡−1)(𝑢, 𝑥) is the last trust score that the domain u has on a kind of specific offer of the the domain
x.

The 𝑅𝑒𝑝(𝑢, 𝑜𝑗) is the average reputation that the domain u has on a kind of specific offer of the provider j.

This reputation contemplates features such as available offers, offer in a particular location, and multiple
time windows to compute these features along the provider j’s offer lifecycle.

𝑅𝑒𝑝(𝑢, 𝑜𝑗) = ∑𝜀(𝑘)

𝑛

𝑘=1

∗
(
𝐶𝑂(𝑗)

𝐼𝑂(𝑗)
 +

𝐶𝑂𝐿(𝑗)

𝐼𝑂𝐿(𝑗)
 + 2 ∗

𝑀𝑂𝑉(𝑗)

𝑃𝑂𝑉(𝑗)
 − 2 ∗

𝐸𝑂𝑉(𝑗)+𝑁𝑃𝑂𝑉(𝑗)

𝑃𝑂𝑉(𝑗)
) + 2

6

where

• ∑nk=1 represents the 𝑛 time windows established by the domain u.

• 𝜀(𝑘) depicts weighting factor to be considered by the domain u for each the time window 𝑘. 𝜀(𝑘) ∈
[0,1] and 𝜀1 +⋯+ 𝜀𝑛 = 1.

• 𝐶𝑂(𝑗) means the number of offers considered by the Smart Resource and Service Discovery (SRSD),
for a particular type of offer, from the provider j when the domain u determined the reputation on
provider j.

• 𝐼𝑂(𝑗) depicts the available number of a particular offer type from the provider j when the domain u
determined the reputation on provider j.

• 𝐶𝑂𝐿(𝑗) means the number of offers considered by the Smart Resource and Service Discovery (SRSD),
for a particular type of offer from provider j, at a particular location, when the domain u determined
the reputation on provider j.

• 𝐼𝑂𝐿(𝑗) depicts the available number of a particular offer type from the provider j, at a particular
location, when the domain u determined the reputation on provider j.

• 𝑀𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations
that were finally managed successful.

• 𝑃𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations.

• 𝐸𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations
that were finally managed unsuccessful (executed).

Page 78 of 82

• 𝑁𝑃𝑂𝑉(𝑗) represents the offer number of SLA violations that were not predicted and turned out to
be SLA violations.

It is worth mentioning that 𝐼𝐴, 𝐼𝐴𝐿, 𝑃𝑉, 𝐼𝑂, 𝐼𝑂𝐿, 𝑎𝑛𝑑 𝑃𝑂𝑉 are parameters whose minimum value is 1. In
other case, if these parameters were initialized to 0, such equation parts should be omitted due to the fact
that the division of 0 by 0 is not allowed.

9.2.2. Feedback Credibility equation

In this first iteration, we have contemplated using a general credibility metric that can be applied to multiple
contexts. Specifically, the personalized similarity metric (PSM) is the one selected. The objective of this
formula is to determine how similar v and w domains are when evaluating the same domain u.

𝐶𝑟(𝑝(𝑢, 𝑖)) =
𝑆𝑖𝑚(𝑝(𝑢, 𝑖), 𝑤)

∑ 𝑆𝑖𝑚(𝑝(𝑢, 𝑗),𝑤)
𝐼(𝑢)
𝑗=1

≡
𝑆𝑖𝑚(𝑣,𝑤)

∑ 𝑆𝑖𝑚(𝑣, 𝑤)
𝐼(𝑢)
𝑗=1

𝑆𝑖𝑚(𝑣,𝑤) = 1 −
√∑ (

∑ 𝑆(𝑥,𝑖)
𝐼(𝑥,𝑣)
𝑖=1

𝐼(𝑥,𝑣)
−
∑ 𝑆(𝑥,𝑖)
𝐼(𝑥,𝑤)
𝑖=1

𝐼(𝑥,𝑤)
)
2

𝑥 ∈𝐼𝐽𝑆(𝑣,𝑤)

∣ 𝐼𝐽𝑆(𝑣, 𝑤) ∣

where

• 𝐼(𝑥, 𝑣) depicts the total number of interactions that have been carried out by the domain x with the
domain v.

• 𝐼(𝑥, 𝑤) depicts the total number of interactions that have been carried out by the domain x with the
domain w.

• ∣ 𝐼𝐽𝑆(𝑣, 𝑤) ∣ is the set of domains that are interacted both with domain v and domain w.

9.2.3. Transaction Context Factor equation

The purpose of this equation is to calculate a final value associated with the current transaction type (product
offer and provider) from the number of feedbacks provided in different time windows established. A higher
number of feedbacks in the different time windows will indicate that both the type of offer and the provider
are currently being used by other domains, and therefore, there will be a higher number of recommenders
to be contemplated for finally determining a stable reputation.

𝑇𝐹(𝑢, 𝑖) =

∑ 𝜀(𝑗) ∗ (

𝐹𝑂(𝑢,𝑖)

𝑇𝑂𝐼(𝑢,𝑖)
+
𝑅(𝑢,𝑖)

𝑇𝐼(𝑢,𝑖)

2
)

𝑛

𝑗=1

𝑛

where

• ∑𝑛𝑗=1 represents the number of time windows established by the domain u.

• 𝜀(𝑗) depicts weighting factor to be considered by the domain u for each the time window 𝑗. 𝜀(𝑗) ∈
[0,1] and 𝜀1 +⋯+ 𝜀𝑛 = 1.

• 𝐹𝑂(𝑢, 𝑖) is the total number of feedbacks of a particular type of offer that have been published about
the domain u in the DLT.

• 𝑅(𝑢, 𝑖) means the total number of recommendations made by other domains about the domain u
and published in the DLT.

• 𝑇𝑂𝐼(𝑢, 𝑖) is the total number of offer interactions recorded in the i-th interaction of the domain u.

• 𝑇𝐼(𝑢, 𝑖) is the total number of provider interactions recorded in the i-th interaction of the domain u.

Page 79 of 82

9.2.4. Community Context Factor equation

The purpose of the 𝐶𝐹(𝑢) is to obtain the feedacks about a domain u. For this purpose, the interaction
number that the domain u had in the community through the contribution of services or resources with other
domains are evaluated. In addition, a dynamic list of trustworthy recommenders is contemplated to ask for
domain u's feedbacks. This new CF equation tries avoiding the bad-mouthing attack since each
recommendation is thoroughly analyzed. On the one hand, the CF considers the action trust that is the trust
score that the domain v has on the domain j. On the other hand, the new CF contemplates the
recommendation trust that is the trust on domain j making recommendations RT(v, j).

𝐶𝐹(𝑢) =

𝑅(𝑢)

𝑇𝐼(𝑢)
+

⨁ (𝛼∗𝑇(𝑣,𝑗) +(1−𝛼) ∗(𝑅𝑇(𝑣,𝑗) ∗𝑅𝑒𝑐(𝑗,𝑢)))∗𝐼𝑛𝑓(𝑣,𝑗)𝑛
𝑗=1

𝑛

2

where

• 𝑅𝑒𝑐(𝑗, 𝑢) the recommendation of the j-th domain with which the domain u has a trust relationship
and it is in our list of trustworthy recommenders. In other words, 𝑇(𝑗, 𝑢).

• 𝑅𝑇(𝑣, 𝑗) is the recommendation trust that the domain v has on the recommender j through previous
recommendations. Being RT(v,j) ≥ 0.3

• 𝐼𝑛𝑓(𝑣, 𝑗)is the recommender's influence over all recomenders contemplated. The higher RT(v,j), the
greater influence.

𝐼𝑛𝑓(𝑢) =
𝑅𝑇(𝑣, 𝑗)

𝑅𝑇

• 𝑅𝑇(𝑣, 𝑗) represents the arithmetic mean of all recommendation trust ≥ 0.2.

The RT parameter should be updated after each new interaction between the trustor with a given trustee. In
this regard, the RT will leverage the following equation:

𝑅𝑇(𝑣, 𝑗)𝑡

=

{

(1 + (𝑆(𝑣, 𝑗) − 𝑆(𝑣, 𝑗)) −∗

(𝑅𝑒𝑐(𝑗, 𝑢) − 𝑅𝑒𝑐(𝑗, 𝑢))

10
+ 𝑅𝑇𝑡−1, 𝑖𝑓 𝑆(𝑣, 𝑗), 𝑅𝑒𝑐(𝑣, 𝑗) < 0 𝑂𝑅 𝑆(𝑣, 𝑗), 𝑅𝑒𝑐(𝑣, 𝑗) > 0

𝑅𝑇𝑡−1 − (1 − (𝑆(𝑣, 𝑗) − 𝑆(𝑣, 𝑗)) ∗
(𝑅𝑒𝑐(𝑗, 𝑢) − 𝑅𝑒𝑐(𝑗, 𝑢))

10
 , 𝑖𝑓 𝑆(𝑣, 𝑗) < 0 𝐴𝑁𝐷 𝑅𝑒𝑐(𝑣, 𝑗) > 0

𝑅𝑇𝑡−1 − (1 + (𝑆(𝑣, 𝑗) − 𝑆(𝑣, 𝑗)) ∗
(𝑅𝑒𝑐(𝑗, 𝑢) − 𝑅𝑒𝑐(𝑗, 𝑢))

10
 , 𝑖𝑓 𝑆(𝑣, 𝑗) > 0 𝐴𝑁𝐷 𝑅𝑒𝑐(𝑣, 𝑗) < 0

𝑅𝑇𝑡−1, 𝑖𝑓 𝑆(𝑣, 𝑗), 𝑅𝑒𝑐(𝑣, 𝑗) = 0

where

• 𝑆(𝑣, 𝑗) is the current satisfaction and 𝑆(𝑣, 𝑗) is the average satisfaction.

9.2.5. General reward and punishment equations

In this section, we are going to explain the general equation to determine a reward or punishment score from
certain collected events. It should be pointed out that such an equation allows us to employ multiple types
of reward and security mechanisms, for instance, time-driven, event-driven, etc. Therefore, the type of
reward and punishment mechanism will be defined through the parameter RP(v,u).

Page 80 of 82

9.2.5.1. Reward and punishment mechanism based on security events

In this regard, the general equation to update a previous trust score after computing a reward or punishment
value is the following one:

𝑁𝑡𝑠(𝑣, 𝑢) = {
𝑂𝑡𝑠(𝑣, 𝑢) + (𝑅𝑃(𝑣, 𝑢) − 0.5) ∗ (

1 − 𝑂𝑡𝑠(𝑣, 𝑢)

10
), 𝑖𝑓 𝑅𝑃(𝑣, 𝑢) ≥ 0.5

𝑂𝑡𝑠(𝑣, 𝑢) − (0.5 − 𝑅𝑃(𝑣, 𝑢)) ∗ (
1 − 𝑂𝑡𝑠(𝑣, 𝑢)

10
), 𝑖𝑓 𝑅𝑃(𝑣, 𝑢) < 0.5

where

• 𝑁𝑡𝑠(𝑣, 𝑢) is the new trust score after applying the reward and punishment of the domain v on the
domain u.

• 𝑂𝑡𝑠(𝑣, 𝑢) is the last trust score that the domain v has in the domain u.

• 𝑅𝑃(𝑣, 𝑢) is the reward or punishment score to be applied over the last trust score.

In this particular case, we are going to contemplate a set of security events gathered from Zeek and Filebeat
through the Security Analysis Service. Especially, this mechanism will be a time-driven type so after a pre-
established time window (i.e., 30 minutes) the previous trust score will be updated using the network
monitoring events. The reward and punishment equation is as follows:

𝑅𝑃𝑡𝑜𝑡𝑎𝑙(𝑣, 𝑢) = 𝛿 ∗ 𝑅𝑃𝑡𝑜𝑡𝑎𝑙 + (1 − 𝛿) ∗ 𝑅𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑣, 𝑢) = 𝛼 ∗ 𝐶𝑜𝑛𝑛(𝑣, 𝑢) + 𝛽 ∗ 𝑁𝑜𝑡𝑖𝑐𝑒(𝑣, 𝑢) + 𝜓 ∗ 𝑊𝑒𝑖𝑟𝑑 (𝑣, 𝑢) + 𝜙 ∗ 𝑆𝑡𝑎𝑡(𝑣, 𝑢)

where

• 𝛿 depicts a weighting factor with respect to the forgetting factor to be considered by domain v. 𝛿 ∈
[0,1].

• 𝛼, 𝛽, 𝜓, 𝜙 depict weighting factors per dimension to be considered by domain v. 𝛼, 𝛽, 𝜓, 𝜙 ∈ [0,1]
and 𝛼 + 𝛽 + 𝜓 + 𝜙 = 1.

In the case of 𝐶𝑜𝑛𝑛(𝑣, 𝑢), it gathers the tracking/logging of general information regarding TCP, UDP, and
ICMP traffic. Hence, we will formulate the following equation:

𝐶𝑜𝑛𝑛(𝑣, 𝑢) = 𝜌 ∗
𝑇𝐶𝑃𝑟𝑒𝑠𝑝𝑝𝑘𝑡𝑠
𝑇𝐶𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠

+ 𝜇 ∗
𝑈𝐷𝑃𝑟𝑒𝑠𝑝𝑝𝑘𝑡𝑠
𝑈𝐷𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠

+𝜔 ∗
𝐼𝐶𝑀𝑃𝑟𝑒𝑠𝑝𝑝𝑘𝑡𝑠
𝐼𝐶𝑀𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠

where

• 𝜌, 𝜇, 𝜔 depict weighting factors to be considered by domain v. 𝜌, 𝜇, 𝜔 ∈ [0,1] and 𝜌 + 𝜇 + 𝜔 = 1.
It is advisable that 𝜇 has a higher value than 𝜌,𝜔.

When it comes to 𝑁𝑜𝑡𝑖𝑐𝑒(𝑣, 𝑢), it collects using Zeek likely monitoring events which are odd or potentially
bad. Thus, we will formulate the following equation:

𝑁𝑜𝑡𝑖𝑐𝑒(𝑣, 𝑢) = 1 −
(

𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑒𝑣𝑒𝑛𝑡𝑠
𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑒𝑣𝑒𝑛𝑡𝑠+𝑁𝑒𝑣𝑒𝑛𝑡𝑠𝑛−1

+
𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑒𝑣𝑒𝑛𝑡𝑠+𝑁𝑒𝑣𝑒𝑛𝑡_𝑙𝑎𝑠𝑡_5_𝑤𝑖𝑛𝑑𝑜𝑤
)

2

Page 81 of 82

where monitoring events may be CaptureLoss::Too_Much_Loss, Weird::Activity,
PacketFilter::Dropped_Packets, Software::Vulnerable_Version, Scan::Port_Scan, and
HTTP::SQL_Injection_Attacker, to name but a few.

With regard to the 𝑊𝑒𝑖𝑟𝑑(𝑣, 𝑢), it provides a default set of actions to take as unusual or exceptional activity
that can indicate malformed connections, malfunctioning or misconfigured hardware, or even an attacker
attempting to avoid/confuse a sensor. In this case, we will formulate the following equation:

𝑊𝑒𝑖𝑟𝑑(𝑣, 𝑢) = 1 −

(
𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑤𝑒𝑖𝑟𝑑_𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑤𝑒𝑖𝑟𝑑_𝑒𝑣𝑒𝑛𝑡𝑠+𝑁𝑤𝑒𝑖𝑟𝑑_𝑒𝑣𝑒𝑛𝑡𝑠𝑛−1
+

𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑤𝑒𝑖𝑟𝑑_𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑎𝑐𝑡𝑢𝑎𝑙𝑒𝑣𝑒𝑛𝑡𝑠+𝑁𝑤𝑒𝑖𝑟𝑑_𝑒𝑣𝑒𝑛𝑡_𝑙𝑎𝑠𝑡_5_𝑤𝑖𝑛𝑑𝑜𝑤
)

2

where weird events may be DNS_UNMTATCHED_RELY or ACTIVE_CONNECTION_REUSE, among others.

Last but not least, 𝑆𝑡𝑎𝑡𝑠(𝑣, 𝑢) gets log memory/packet/lag statistics from Zeek. In this case, we want to
determine the percentage of packets analyzed by Zeek with respect to those issued. The equation is the
following one:

𝑆𝑡𝑎𝑡𝑠(𝑣, 𝑢) = 𝜌 ∗
𝑇𝐶𝑃𝑝𝑘𝑡𝑠_𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑𝑍𝑒𝑒𝑘

𝑇𝐶𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠
+ 𝜇 ∗

𝑈𝐷𝑃𝑝𝑘𝑡𝑠_𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑𝑍𝑒𝑒𝑘
𝑈𝐷𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠

+𝜔 ∗
𝐼𝐶𝑀𝑃𝑝𝑘𝑡𝑠_𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑𝑍𝑒𝑒𝑘

𝐼𝐶𝑀𝑃𝑜𝑟𝑖𝑔𝑝𝑘𝑡𝑠

where

• 𝜌, 𝜇, 𝜔 depict weighting factors to be considered by domain v. 𝜌, 𝜇, 𝜔 ∈ [0,1] and 𝜌 + 𝜇 + 𝜔 = 1.
It is advisable that 𝜇 has a higher value than 𝜌,𝜔.

9.2.5.2. Reward and punishment mechanism based on SLA Breach Predictions and violations

In this regard, the general equation to update a previous trust score after computing a reward or punishment
value is the following one:

𝑁𝑡𝑠(𝑣, 𝑢) = {
𝑂𝑡𝑠(𝑣, 𝑢) − 𝑃𝑢(𝑢, 𝑣,𝑚) ∗ (

1 − 𝑂𝑡𝑠(𝑣, 𝑢)

5
), 𝑖𝑓 𝑛𝑜𝑡 𝑛𝑒𝑤 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑂𝑡𝑠(𝑣, 𝑢) + 𝑅𝑒(𝑢, 𝑣,𝑚) ∗ (
1 − 𝑂𝑡𝑠(𝑣, 𝑢)

5
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where

• 𝑁𝑡𝑠(𝑣, 𝑢) is the new trust score after applying the reward and punishment of the domain v on the
domain u.

• 𝑂𝑡𝑠(𝑣, 𝑢) is the last trust score that the domain v has in the domain u.

• 𝑅𝑒(𝑣, 𝑢,𝑚) is the reward score to be applied over the last trust score about the metric m.

• 𝑃𝑢(𝑣, 𝑢,𝑚) is the punishment score to be applied over the last trust score about the metric m.

In the case of punishment, it considers three main dimensions:

𝑃𝑢(𝑣, 𝑢) = ∑
𝐵𝑃𝑅𝑎𝑡𝑒(𝑢,𝑚) + 𝐼𝑇𝑟𝑢𝑠𝑡(𝑣, 𝑢) ∗ 𝑆𝐿𝑉𝑅𝑎𝑡𝑒(𝑢,𝑚)

2

𝑛

𝑚=1

In the case of 𝐵𝑃𝑅𝑎𝑡𝑒(𝑢,𝑚), it computes the probability of suffering breach violation after predictions if the
sakeholder u continues with the current behaviour. 𝐵𝑃𝑅𝑎𝑡𝑒(𝑢,𝑚) is subdivided into:

Page 82 of 82

𝐵𝑃𝑅𝑎𝑡𝑒(𝑢,𝑚) =
𝑆𝐿𝑂𝐵𝑃(𝑢,𝑚)

∑ 𝑆𝐿𝑂𝐵𝑃(𝑢, 𝑘)𝑛
𝑘=1

∗ 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝐵𝑃(𝑢,𝑚)

where

• 𝑆𝐿𝑂𝐵𝑃(𝑢,𝑚) is the number of breach predictions in a given time window for the metric m.

• 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝐵𝑃(𝑢,𝑚) is the accuracy of the algorithm used by the ISBP module to predict breach
predictions.

With respect to the 𝐼𝑇𝑟𝑢𝑠𝑡(𝑣, 𝑢) , it measures how trust affects over the SLA events appearing in real time.

𝐼𝑇𝑟𝑢𝑠𝑡(𝑣, 𝑢) = (1 −
1 − 𝑇(𝑣, 𝑢)

1 + 𝑇(𝑣, 𝑢)
) ∗ 𝜇𝑡𝑟𝑢𝑠(𝑣, 𝑢)

where

• 𝑇(𝑣, 𝑢) is the current trust score between domain v and domain u.

• 𝜇𝑡𝑟𝑢𝑠(𝑣, 𝑢) is a fuzzy set to determine the impact level of trust over the SLA events.

Finally, the punishment mechanism considers the SLA violation rate:

𝑆𝐿𝐴𝑉𝑅𝑎𝑡𝑒(𝑢,𝑚) = 𝛼 ∗ 𝑆𝐿𝐴𝑉𝑅𝑎𝑡𝑒𝑡−1(𝑢,𝑚) + (1 − 𝛼) ∗ 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑢,𝑚) ∗ 𝜇𝑣𝑖𝑜(𝑢,𝑚)

where

• 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑢,𝑚) measures the growth of violations over the historical value.

• 𝜇𝑣𝑖𝑜(𝑢,𝑚) is another fuzzy set to find out the impact of new SLA violations over the new rate.

In order to reward stakeholders when they do not have SLA Violations, this mechanism also contemplates a

reward function. In particular, this function is applied when the number of SLA Violations in the current time

windows is 0.

𝑅𝑒(𝑣, 𝑢) = min((∑ 𝑆𝐿𝐴𝑉𝑅𝑎𝑡𝑒𝑡−1(𝑢,𝑚) − 𝑆𝐿𝐴𝑉𝑅𝑎𝑡𝑒𝑡(𝑢,𝑚)

𝑛

𝑚=1

), 1)

<END OF DOCUMENT>

