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Cyberattacks targeting modern network infrastructures are increasing in number and impact. This growing phenomenon emphasizes
the central role of cybersecurity and, in particular, the reaction against ongoing threats targeting assets within the protected system.
Such centrality is reflected in the literature, where several works have been presented to propose full-fledged reaction methodologies
to tackle offensive incidents’ consequences. In this direction, the work in [18] developed an immuno-based response approach based
on the application of the Artificial Immune System (AIS) methodology. That is, the AIS-powered reaction is able to calculate the
optimal set of atomic countermeasure to enforce on the asset within the monitored system, minimizing the risk to which those are
exposed in a more than adequate time. To further contribute to this line, the paper at hand presents AISGA, a multi-objective approach
that leverages the capabilities of a Genetic Algorithm (GA) to optimize the selection of the input parameters of the AIS methodology.
Specifically, AISGA selects the optimal ranges of inputs that balance the tradeoff between minimizing the global risk and the execution
time of the methodology. Additionally, by flooding the AIS-powered reaction with a wide range of possible inputs, AISGA intends
to demonstrate the robustness of such a model. Exhaustive experiments are executed to precisely compute the optimal ranges of
parameters, demonstrating that the proposed multi-objective optimization prefers a fast-but-effective reaction.
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1 INTRODUCTION

With the significant expansion of the Information and Communication Technology (ICT) systems, network infrastruc-
tures are growing in size and complexity [4]. In this sense, their importance in modern lives is unquestionable since
humans rely on the offered services every day more [9]. Such an explosion is also reflected in the adoption of powerful
technologies (e.g., Blockchain [2]) and paradigms (e.g., Internet of Things (IoT) [20]), which are able to generate a great
economic impact.

Nonetheless, the digital revolution carries negative consequences, too. In fact, malicious entities are continuously
targeting those essential infrastructures to undermine the availability of the services and the confidentiality and integrity
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of the managed information [3]. Consequently, the quantity and disruption of cyberattacks are constantly increasing,
alarming security teams worldwide struggling to find efficient measures to protect the cyberspace [8].

In such a frightening situation, one could easily say that selecting the optimal combination of countermeasures to
react against cyber threats is of primary importance [5, 14]. In particular, the reactive steps need to balance the inherent
tradeoff between the effectiveness of the response (i.e., the ability to block the intrusion) and the potential negative
consequences (i.e., the impact on the assets of the system and the cost of those measures) [10, 27].

Besides, the reaction ecosystem still poses some unresolved challenges, forcing both academia and industry to
propose novel solutions in this endless, multifaceted battle [19]. Recently, authors in [18] proposed a countermeasures
selection methodology based on the application of AIS, a bio-inspired technique that mimics the behavior of the
vertebrate immunological system. Such a reaction was able to minimize the risk to which the assets of the system were
exposed in a more than acceptable time frame. Additionally, the authors proposed a context-aware stop condition for
the AIS-powered reaction, which was calculated on-the-fly based on the measured risk value for each asset. However,
the input parameters used to fire the methodology, including the number of iterations, countermeasures, and others,
were chosen based on the authors’ assumptions and experimental results. In this direction, one could argue that the
employment of an optimization technique would be advantageous to pinpoint accurate values for those parameters,
enhancing both the protection and timing performance of the proposed methodology [15].

To this extent, the paper at hand introduces AISGA, an evolutive methodology to select the input parameters of the
AIS-powered reaction. Specifically, the optimizer leverages the capabilities of a GA, which permits finding optimal
solutions for the input parameters through the crossover and mutation phases of the individuals. Indeed, the GA has
been proved successful in solving several optimization problems in different knowledge areas, including mathematics,
informatics, etc. [6]. In this sense, the presented GA methodology performs a multi-objective optimization of the
parameters, i.e., risk and execution time of the AIS-powered reaction. By doing so, the GA parameters optimization
allows one to thoroughly study the performance and the robustness of the AIS-powered reactions against a wide range
of possible input constraints.

The remainder of the paper is organized as follows. Section 2 presents a set of relevant academic works in this area.
In Section 3, the AIS-powered reaction methodology is reviewed, with a particular focus on the limitation of the input
parameters computation. Then, Section 4 proposes the multi-objective parameters optimization scheme applied to the
AIS reaction through the genetic algorithm. Next, Section 5 presents the outcomes of the conducted experiments. In
Section 6, interesting arguments concerning the proposed procedure are discussed. Finally, Section 7 concludes the
paper, proposing potential future works to contribute to the reaction ecosystem.

2 RELATEDWORKS

Within the cybersecurity ecosystem, the reaction phase still poses several challenges that both academia and industry
are struggling to solve [19]. To this extent, diverse works have been presented to propose effective and robust solutions
to trigger against the occurrence of offensive incidents.

In [24], the authors proposed a novel risk assessment methodology based on the application of Attack Graph (AG).
Such an approach enhances the standard AG-based model, avoiding frequent regenerations of the attack representation.
Also, a heuristic approach is suggested to compute the optimal countermeasure to deploy that minimize the overall risk
with specific budget constraints. The evaluation of the proposal was conducted in a typical organizational ICT network,
demonstrating that it is cost-efficient.
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Moreover, a new Autonomous Response Controller (ARC) to react against cyberattacks targeting Cyber–Physical
Power Systems (CPPS) is presented in [12]. Specifically, ARC leverages the capabilities of a Hierarchical Risk Correlation
Tree (HRCT), which can quantitatively measure the risk within the monitored system. This risk level is then provided
to the ARC that can autonomously assess the security improvement derived by the application of certain remediations.
Besides, ARC covers the uncertainty of the Intrusion Detection System (IDS) alerts by using the Competitive Markov
Decision Processes (CMDPs). The capacities of the framework are demonstrated in a real substation in the CPPS with
an acceptable response time.

On the line of Cyber–Physical System (CPS) protection, authors in [11] proposed a method to identify the security
control to protect large-scale CPSs. By leveraging a model to calculate and aggregate the risk among the different
components of CPSs, the authors used an ad-hoc version of GA to cherry-pick the adequate remediations that minimize
the risk at the lowest cost. Later, a real case scenario on Cyber-Enabled Ship (C-ES) was employed to show the approach’s
applicability.

Furthermore, authors in [26] proposed a methodology to determine which security investments should be imple-
mented by organizations in various risk treatment options. Those investments are connected with specific security
controls, generating a model which later is solved as an optimization problem (based on the knapsack technique) using
dynamic programming.

Additionally, research on decision-making issues regarding cybersecurity plans by governments and firms is offered
in [22]. Bearing in mind the budget limitations, the authors suggested a methodology to compute optimal decisions on
the countermeasures portfolio via a two-stage stochastic programming approach, separating prevention-detection and
reaction stages. To this extent, real case studies are submitted to elaborate and discuss the approach.

Recently, an interesting methodology to select the optimal set of countermeasures to fire against the appearance of
cyber threats is proposed in [18]. Such a methodology is based on the application of AIS and will be detailed in Section 3.
The analyzed proposals represent crucial contributions to the reaction ecosystem. Nonetheless, the robustness of the
presented methodologies against a wide range of inputs is often neglected. In this direction, the work in [18] suggested
a context-aware stop condition based on experimental outcomes and authors’ subjective beliefs. One could argue that
an optimization approach would be beneficial to further demonstrate the capabilities of the proposed framework and
discuss the main advantages and potential drawbacks.

3 AIS-POWERED REACTION

To contribute to the reaction ecosystem, the authors in [18] presented the AIS-powered reaction, an adaptation of the AIS
methodology to select the optimal set of countermeasures to counteract cyberthreats happening within the monitored
system. The countermeasure objects are encapsulated in a standard representation, which boosts the interoperability
and sharing of the reaction-related knowledge [17]. In particular, the authors performed an initial modeling phase to
translate the immuno-related concepts to the cybersecurity context. In this direction, the collection of assets 𝐴𝑥 ∈ 𝐴 is
the primary focus of the reaction procedure. At any time, those assets need to be protected against possible threats
𝜏𝑘 ∈ 𝑇 , namely, vulnerabilities or attacks, by minimizing the risk to which they are exposed. To this extent, the threats
𝑇 represent the antigens against which the AIS-powered reaction computes the optimal response using antibodies, i.e.,
the set of countermeasures 𝐶𝑀 .

To select which of those atomic countermeasures 𝑐𝑚𝑖 ∈ 𝐶𝑀 will be included in the optimal solution, the authors
proposed the countermeasure benefit 𝐵(𝑐𝑚𝑖 ) ∈ [1, 10]. This index evaluates the advantage of implementing specific a
remediation over a particular asset by balancing the inherent tradeoff between its effectiveness and its negative impact

3



ARES 2021, August 17–20, 2021, Vienna, Austria Nespoli et al.

Initial 
random 

generation

Cloning
K=1

Mutation

Determine 
affinity

𝐶𝑀3 is 
removed

Replace worst 
affinity with 
random one

𝐶𝑀1
′ is 

discarded

ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀3}

ℂ𝕄 = {∅}

ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀3}

ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀3}

YesNo
ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀1

′ ,𝐶𝑀2}ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀3}

ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀1
′ ,𝐶𝑀4}ℂ𝕄 = {𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀4}

𝑓 𝐶𝑀1
′ < 𝑎𝑣𝑔_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(ℂ𝕄)

New
iteration

Stop

𝑆𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡?

Yes

No

𝐶𝑀1

𝐶𝑀1
′

Fig. 1. AIS-powered reaction steps

and cost, as reported in Equation 1. Since the values 𝐸𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, 𝐼𝑚𝑝𝑎𝑐𝑡,𝐶𝑜𝑠𝑡 ∈ [0, 1], 𝜔 is used to shift the value
to reside in the interval [1, 10]. In this regard, the computation of the countermeasure benefit is generalized to the
enforcement of a set of countermeasures, 𝐵(𝐶𝑀) ∈ [1, 10], since one or more remediations can be applied on the same
asset simultaneously.

𝐵(𝑐𝑚𝑖 ) = 𝜔 × (𝐸𝑓 𝑓 (𝑐𝑚𝑖 ))
1−

(
𝐼𝑚𝑝 (𝑐𝑚𝑖 )+𝐶𝑜𝑠𝑡 (𝑐𝑚𝑖 )

2

)
(1)

Once the concepts of the AIS have been transferred to the reaction ecosystem, the authors proposed to apply the
AIS-powered reaction to minimize the difference between the risk to which the assets are exposed (i.e., the measured
risk 𝑅𝐿(𝜏𝑘 , 𝐴𝑥 ,𝐶𝑀𝑗 (𝐴𝑥 )) ∈ [0, 10]) and the acceptable risk level assigned to each asset 𝑅𝐿(𝐴𝑥 ) ∈ [0, 10] by applying
a set of countermeasures 𝐶𝑀 𝑗 (𝐴𝑥 ), as shown in Equation 2. Particularly, function 𝑓 is referred to as fitness function.
The main reason behind this choice lies in the fact that the enforcement of countermeasures must elude blind risk
minimization, thus avoiding both overprotection or underprotection of all the assets.

𝑚𝑖𝑛
𝐶𝑀𝑗 (𝐴𝑋 )

𝑓 = |𝑅𝐿(𝜏𝑘 , 𝐴𝑥 ,𝐶𝑀𝑗 (𝐴𝑥 )) − 𝑅𝐿(𝐴𝑥 ) | (2)
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It is worth remarking that, since the value of the fitness function pertains to the interval [0, 10], Equation 2 means
that a lower value of fitness entails a better solution.

The flow of events that characterizes the AIS-powered reaction can be summarized as follows. Depending on the type
of reaction (i.e., static or dynamic), a security event is generated by the monitors deployed within the protected system
(i.e., vulnerabilities scanners and IDSs) and, consequently, sent to the Security Information and Event Management
(SIEM) server. Here, the events are centrally recollected, and crucial information is extracted (e.g., the involved assets,
the affected vulnerabilities, etc.) to calculate the assets’ current risk level. At this point, the AIS-powered reaction
procedure is initiated, computing an initial random solution, i.e., a set of antibodies. Each antibody is modeled as a set
of atomic countermeasures that may be implemented on the asset exposing a certain risk. Once the initial generation
has been completed, the following steps are executing cyclically:

• Determine affinity: the affinity of each antibody belonging to the solution space is computed. That is, the
benefit derived from the enforcement of the atomic countermeasures is calculated, and, consequently, the fitness
is determined for each of the antibodies, and the average fitness is stored.

• Clone antibodies: the antibody with the best affinity (those which minimize the fitness function) are cloned.
The number of generated clones depends on the mutation parameter 𝐾 ∈ N.

• Mutate attributes: each of the cloned antibodies experiences a mutation phase, where its atomic countermea-
sures are added/removed/modified randomly. If the affinity of the mutated clone is above the average, it is
included in the solution space replacing the lowest affinity antibody. Otherwise, it is discarded.

• Replace antibodies: the 𝐾 lowest affinity antibodies are eliminated from the solution space. In their place, 𝐾
random generated antibodies are inserted, and the procedure is ready to start over again.

A graphical representation of the procedure is shown in Figure 1. Once the initial generation of the antibodies has
been completed, e.g., CM = {𝐶𝑀1,𝐶𝑀2,𝐶𝑀3}, their affinity is calculated. Then, assuming that the cloning parameter
𝐾 = 1, the best affinity antibody is cloned (in the example, 𝐶𝑀1). Later, 𝐶𝑀1 is mutated, generating 𝐶𝑀 ′

1. Suppose its
affinity is still better than the average affinity of the entire antibody set. In that case, 𝐶𝑀 ′

1 becomes part of the solution
space CM, while the worst affinity antibody, say, 𝐶𝑀3, is removed. Instead, if the affinity is worse than the average,
𝐶𝑀 ′

1 is discarded, and 𝐶𝑀3 remains in the solution space. Finally, the worst remaining antibody within CM, say, 𝐶𝑀3

or 𝐶𝑀2 in this example, is removed, and a new randomly generated one replaced it, say, 𝐶𝑀4. At this point, if the stop
condition is met, the AIS-powered methodology stops, otherwise another iteration starts.

Moreover, the authors demonstrated the applicability of the proposed approach through numerous experiments. The
parameters of the underlying scenarios (i.e., threats, assets, and countermeasures) were randomly generated to better
argue the capabilities of the methodology by introducing randomness. Indeed, the performances of the AIS-powered
reaction are more than satisfactory both in terms of fitness and execution time. During the experimental sessions,
authors vary the number of iteration of the algorithm 𝐼𝑡𝑒𝑟 ∈ [100, 1,000], the number of atomic countermeasures of
the system |𝐶𝑀 | ∈ [100, 1,000], and the number of antibodies composing the solution space |CM| ∈ [10, 40], while
maintaining the cloning factor 𝐾 = |CM|/3. Based on the experiments, a context-aware stop condition was also
proposed, which, based on the witnessed initial fitness, assigns specific values to the abovementioned parameters
𝑃𝑖 ∈ {𝐼𝑡𝑒𝑟, |𝐶𝑀 |, |CM|} following Equation 3:

𝑃𝑖 =𝑚𝑖𝑛𝑖 + (𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖 ) × (1 − 𝑓 /10) (3)

In particular, for each parameter, min-max intervals have been determined as reported in Equation 4:
5
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𝐼𝑡𝑒𝑟 ∈ [100, 975]
|𝐶𝑀 | ∈ [100, 1,100]
|CM| ∈ [10, 35]

(4)

By capitalizing on this approach, the AIS-powered methodology calculates solutions quickly when the initial fitness
is high (i.e., the assets are exposed to a high-risk situation), while computes longer searching for better solutions when
the initial fitness is low. Nevertheless, the min-max intervals of the input parameters have been assigned based on the
experiments’ outcomes and authors’ subjective beliefs. At this point, one could easily argue that a procedure to stabilize
those values represents a significant step ahead to prove the performance and robustness of the AIS reaction.

4 AISGA MULTI-OBJECTIVE OPTIMIZATION

Throughout this Section, the multi-objective parameters optimization for the AIS-powered reaction is presented. In
particular, AISGA leverages the capabilities of a GA to optimize the input parameters focusing on two outputs, namely,
the fitness and the execution time of the solution.

Selecting the optimal parameters for combinatorial problems or machine learning tasks is challenging. In this regard,
GA is a random-based classical evolutionary algorithm successfully applied to solve several computational problems in
different knowledge fields [25]. Indeed, the GA applies random changes to the current solutions to generate new ones,
aiming to further explore the search space [7]. More specifically, such a methodology is based on Darwin’s Theory of
evolution, in which a gradual process of progression leads to individuals with few changes in the population who are
better adapted to their environment. In this regard, each solution within the population of a GA is also referred to as
individual, which possesses a fitness value. Such a value is fundamental to correctly select the best individuals within
the population.

GAs are generally composed of the following sequential steps, which are repeated until a predetermined stop
condition is met [21]:

• Initial population creation: an initial population of fixed size is generated, often based on the fitness value of
each individual.

• Individuals selection: a subset of the individuals within the population is selected to proceed to the subsequent
phases. In this case, higher quality individuals have more chances of being selected.

• Individuals crossover: this operation recombines the genetic materials of the selected individuals to generate
new offsprings. Similar to reproduction in biology, the offspring will own both parents’ genes after the crossover.

• Individuals mutation: for each of the generated offsprings, some genes are randomly selected and mutated
(their values are changed).

• Population replacement: a subset of the lately generated individuals (i.e., offsprings) will replace the old
generation individuals. The fitness value also guides this step, aiming at improving the population with high-
fitness individuals.

In our case, the GA is used to optimize the selection of the input parameters of the AIS-powered reaction. Concretely,
the main goal of AISGA is to find the optimal min-max ranges of values for the parameters 𝑃𝑖 ∈ {𝐼𝑡𝑒𝑟, |𝐶𝑀 |, |CM|, 𝐾}
for the multi-objective fitness function g described in Equation 5. It is worth noticing that, to equalize the size of the
two output parameters (𝑓 (𝐶𝑀𝑖 ) and 𝑇 ), the 𝑙𝑜𝑔10𝑋 operator is applied to the execution time 𝑇 ∈ R. By doing so, the
GA procedure can select the parameters with more equity.
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𝑚𝑖𝑛 𝑔 = 𝑓 (𝐶𝑀𝑖 ) + log10𝑇 (5)

The multi-objective fitness function 𝑔 in Equation 5 is charged with a dual-fold responsibility. On the one hand, the
best antibody 𝐶𝑀𝑖 selected by the AIS methodology must minimize the fitness function 𝑓 , i.e., minimize the difference
between the risk to which the system’s assets are currently exposed and the acceptable risk level for each asset. On the
other hand, the execution time 𝑇 of the AIS algorithm must be as low as possible since the timing is also an essential
factor in the battle against intrusive incidents. So, by combining the fitness 𝑓 and the execution time 𝑇 , AISGA aims at
exploring the solution space to find individuals (i.e., the input parameters to optimize) that feature both outstanding
security and timing performance.

The description and possible values of the parameters of the AIS-powered reaction are reported in Table 1. In
particular, Table 1 distinguishes between input parameters (the ones that the GA approach intends to optimize) and the
output parameters (the ones that constitute the fitness function 𝑔). To this extent, the range of the input parameters
is intentionally quite wide since, in our idea, the GA should try as many combinations of inputs as possible during
its execution. Note that the other inputs requested by the AIS methodology, namely, threats, countermeasures values,
assets, are randomly generated throughout the experiments.

Table 1. Description and values for each parameter to optimize of the AIS-powered reaction.

Type Parameter Description Value Domain

Input

|𝐶𝑀 | Number of atomic countermeasures [20, 2,000] N
|CM| Number of antibodies [1, 100] N
𝐾 Number of clones [1, 30] N
𝐼𝑡𝑒𝑟 Number of iterations [1, 2,000] N

Output 𝑓 (𝐶𝑀𝑖 ) Fitness value of the best solution [0, 10] R
T Execution time of the algorithm (in seconds) [0, +∞] R

Additionally, the parameters of the AISGA optimizer are summarized in Table 2. Specifically, the GA procedure
has been executed with𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 500 to let the algorithm run for an acceptable amount of time and 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 = 30
to achieve a fast convergence. The mutation and crossover probabilities have been set, respectively, to 10% and 50%,
while their type is uniform. Also, the portion of the population replaced by the individuals of the previous generation,
i.e., the parents, is 30%. Notably, the version of the algorithm selected for the proposed context is Elitist GA, in which
the convergence curve is always non-increasing. So, the best fitness individual is equal to the best solution of the last
iteration, which can help speed up the process. Following the same reasoning, the maximum number of iterations
without significant improvements has been set to 50.

5 EXPERIMENTS

Numerous thorough experiments have been carried out to optimize the AIS-powered reaction parameters through the
AISGA procedure. As previously mentioned, the main goal of AISGA is to find the optimal min-max range for the input
parameters 𝑃𝑖 ∈ {𝐼𝑡𝑒𝑟, |𝐶𝑀 |, |CM|, 𝐾} by solving the multi-objective optimization of Equation 5.

The tests have been executed on a Toshiba Portege Z30-C laptop equipped with an Intel Core i7-6500U CPU and 16
GB of DDR4 memory, using an ad-hoc adaptation of the GA python implementation proposed here1. Moreover, the
1https://pypi.org/project/geneticalgorithm2/
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Table 2. Description and values for each parameter of the AISGA optimizer.

Parameter Description Value
max_iter Number of iterations of the algorithm 500
pop_size Size of the population in each iteration 30
mut_prob Probability of each gene of the individual to be mutated 10%
mut_type Type of mutation uniform by center
cross_prob Probability of crossover 50%
cross_type Type of crossover uniform
par_port Portion of parents selected in the next generation 30%
elit_ratio Ratio of elites in the population 10%

max_iter_no_improv Maximum number of iterations without improvements 50

Itermin Itermax | |min | |max Kmin Kmax |CM|min |CM|max

Parameter

10
0

10
1

10
2

10
3

Va
lu

e

Fig. 2. Boxplot representation of the outcomes of the experiments

experiment has been repeated 100 times to prove the robustness of the approach and avoid potential outliers due to the
randomness of the considered entities. Since each run of the GA lasts for 25,000 sec on average, the total duration of
the experimental session was ~30 days. It is worth mentioning that the experiments have been executed simulating a
small network with a number of assets 𝑁𝐴 = 20 and a number of threats |𝜏 | = 20. More specifically, for each run of the
AISGA procedure, 20 assets and threats are simulated, randomly generating the parameters that define such entities
(i.e., the criticality of the assets together with the probability of occurrence and impact of the threats). Those values are
essentially used to calculate the risk to which the assets are exposed.

The outcomes of the experiments are illustrated in Figure 2, where the parameters have been plotted on a logarithmic
scale. In detail, the number of iterations 𝐼𝑡𝑒𝑟 that optimize the fitness function 𝑔 is included in the interval [102, 230]
with regard to the median value, i.e., 𝐼𝑡𝑒𝑟𝑚𝑖𝑛 = 102 and 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 = 230. Such a result is coherent with the outcomes
in [18]. Specifically, the AIS reaction stabilizes the fitness 𝑓 after ~100 iterations, and then such a value improves quite
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slowly until the end of the experiment, which in that case was 1,000 iterations. In contrast, the execution time increases
linearly with the number of iterations. It is clear that the number of iterations of the AIS methodology is the parameter
with the highest impact on the timing performance. Hence, the multi-objective fitness-time optimization proposed by
AISGA computes a low value for the maximum iteration, suggesting a fast-but-effective reaction.

Additionally, the number of antibodies |CM| (i.e., set of atomic countermeasures) that AIS leverages to calculate
the optimal reaction is restricted to [8, 17] concerning the median value, i.e., |CM|𝑚𝑖𝑛 = 8 and |CM|𝑚𝑎𝑥 = 17. Each of
those antibodies contains at least one atomic remediation to counteract the 20 randomly generated threats. It has to
be stressed out that, as for the iterations, a higher number of antibodies implies a longer execution time of the AIS
methodology. Thus, AISGA balances the tradeoff risk-timing by maintaining a restrained quantity of antibodies.

Furthermore, the cloning factor 𝐾 , designating the number of antibodies cloned during the AIS runs, belongs to the
interval [4, 9] regarding the median value, i.e., 𝐾𝑚𝑖𝑛 = 4 and 𝐾𝑚𝑎𝑥 = 9. In contrast with the work in [18] that presented
a fixed value 𝐾 = |CM|/3, 𝐾 is not limited to the number of antibodies in AISGA. Such a choice has been taken to give
more freedom to the GA optimization when selecting the number of antibodies to clone. Obviously, the greater the
value of 𝐾 , the more antibodies are cloned and mutated, resulting in a broader exploration of the solution space during
the AIS runs, but also in an extended execution time. Therefore, AISGA estimates that the optimal value for 𝐾 is also
relatively low due to the restrictions of the proposed multi-objective fitness function 𝑔.

Finally, the number of atomic countermeasures |𝐶𝑀 | used by the AIS-powered reaction to minimize the total risk
is included in the interval [200, 420] concerning the median value, i.e., |𝐶𝑀 |𝑚𝑖𝑛 = 200 and |𝐶𝑀 |𝑚𝑎𝑥 = 420. Since the
experiments have been executed simulating a network of 20 assets on average, these results signify that each asset
should be equipped with between 10 and 21 countermeasures approximately. Such an outcome further emphasizes
the importance of possessing comprehensive countermeasure knowledge within the protected system to accurately
counteract against potential threats. However, the number of countermeasures also impacts the timing performance of
the AIS reaction since the procedure must enforce several countermeasures and, consequently, compute more benefit
indexes.

All in all, the experimental outcomes can give one an interesting perspective on both the risk and timing performance
of the AIS-powered reaction methodology. Recalling that the inputs of the procedure (i.e., assets, countermeasures,
and threats) have been randomly simulated and that the GA optimization procedure is based on the randomicity,
one can conclude that the robustness of the AIS model against a wide range of input values has been demonstrated.
Besides, thanks to the AISGA optimizer, the min-max ranges of the input parameters have been computed, balancing
the inherent tradeoff between minimizing the risk and execution time of the methodology simultaneously.

6 DISCUSSION

In the previous Sections, the AISGA procedure has been presented and tested, demonstrating its capabilities to select
the optimal ranges of parameters to feed the AIS reaction methodology. Nonetheless, some arguments regarding the
countermeasures selection ecosystem are worthy of discussion.

As widely reviewed in Section 3, the AIS-powered reaction aims to select the optimal set of atomic countermeasures
to fight against cyber threats. Such a selection is intended to help security administrators in the decision-making
process, guiding them towards the correct actions to eradicate the threat. Recently, the decision-making ecosystem has
witnessed the rise of reinforcement learning methods, which are able to learn over time and improve their accuracy [1].
Undoubtedly, those methods look promising, featuring exciting capabilities. However, their performance directly
depends on the scenario on which they are implemented, requiring an initial learning phase. On the contrary, the
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combination of AIS reaction and AISGA optimization procedure can compute the optimal reaction using only the
countermeasure knowledge of the system. In this sense, the proposed methodology can be defined as generic, adapting
itself to different scenarios. Nevertheless, the approaches can be combined, e.g., AIS can be used to send feedback to the
learning procedure to speed up the process, being supervised by the administrators at any time, thus contributing to
the overall cyber threat intelligence.

Additionally, since AIS possesses a defensive focus, one could assume that potential attackers would try to undermine
its capabilities through specific counterintelligence actions, i.e., adversarial tactics [23]. Specifically, an attacker could
try to force several reaction steps, for example, to consume the system’s resources. In this scenario, the fitness level that
fires the procedure (i.e., the difference between the measured and acceptable risk for each asset) should be tuned to
consider such tactics in an effort to mitigate their effect. However, the robustness of the AIS-powered response has been
extensively demonstrated throughout the exhaustive experiments conducted by the AISGA optimizer. Moreover, as we
will see in Section 7, an interesting future line consists of enriching the countermeasures knowledge with offensive
countermeasures, which can be fired in the mentioned counterintelligence situations.

7 CONCLUSIONS AND FUTUREWORK

The galloping digitalization, cloudification, and the so-called “new norm” introduced by the pandemic are impacting
our lives every day more. Humans leverage the hyperconnectivity offered by the modern ICT systems, consuming
services to improve their quality of lives at an astonishing speed [13]. Nevertheless, such a revolution also implies
the appearance of ill-motivated entities that perform malicious actions against those systems to achieve their spiteful
objectives. Indeed, powerful cyberattacks undermine the stability of the cyberspace, claiming the attention of security
teams from both public and private sectors [16].

In this direction, several proposals have been presented, aiming to develop a full-blown reaction strategy to fire against
potential cyber threats. Among them, the work in [18] proposed an interesting immuno-based response approach based
on the AIS methodology. In fact, the AIS-powered reaction is able to compute the optimal set of atomic countermeasures
to enforce on the assets of the system, balancing the tradeoff between the effectiveness of reaction and possible negative
consequences of its implementation. This procedure looks promising in the battle against offensive incidents, achieving
excellent results in a more than acceptable time lapse. Nevertheless, the robustness of the methodology against a
wide range of possible inputs has been neglected. Besides, the experimental inputs for certain features, including the
context-aware stop condition, have been picked based on outcomes results and authors’ beliefs.

Under this prism, the paper at hand proposed AISGA, a multi-objective approach that leverages the capabilities of
the GA to optimize the selection of the parameters of the AIS solution. Specifically, AISGA performs risk minimization
and time reduction concurrently thanks to the constant mutation and crossover phases of the selected individuals.
Exhaustive experiments were executed to flood the AIS methodology with a broad series of parameters, aiming to prove
both the robustness of the AIS-powered model and to explore the solution space extensively. By using the multi-objective
fitness function 𝑔, the computed intervals were quite reduced, suggesting that a fast-but-effective reaction was preferred
to a meticulous-but-expensive one.

Future work will explore the possibility of implementing the AIS reaction methodology in a real use-case scenario to
study the impact of the optimized parameters. Additionally, the viability of enriching the countermeasures knowledge
with offensive countermeasures is worth of study, considering their importance in military contexts.
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