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ABSTRACT Nowadays, Information and Communication Technology (ICT) infrastructures play a crucial
role for human beings, providing essential services at astonishing speed. Nevertheless, such a centrality
of those infrastructures attracts the interest of ill-motivated actors that target such infrastructures with
cyberattacks that are every daymore sophisticated andmore disruptive. In this alarming context, selecting the
optimal set of countermeasures represents a primary need to react against the appearance of potentially dan-
gerous threats effectively. With the motivation to contribute to developing faster and more effective response
capabilities against them, the paper at hand introduces a novel cybersecurity reaction methodology based
on Artificial Immune Systems (AIS), for which the evolutionary computing paradigm has been adopted.
By leveraging the outstanding properties of these bio-inspired techniques, the selected countermeasures to
defeat cyberthreats through cloning and mutation phases in an effort to improve the quality of the solution
from a quantitative perspective, being able to adjust the risk to which the assets of the protected system are
exposed. Exhaustive experiments demonstrate the feasibility of the proposed approach, reducing the risk in
a more than acceptable time lapse.

INDEX TERMS Countermeasure selection, cyberattack countermeasures, intrusion reaction systems,
artificial immune systems, bio-inspired reaction.

I. INTRODUCTION
Themodern era brought a technological revolution never seen
before. Human beings rely every day more on the services
offered by powerful and responsive machines that signifi-
cantly increase the quality of their lives [1]. In this direction,
ICT infrastructures play an essential role in developing this
modern society. That is, they permit to connect people among
them at astonishing speed, offering also vital services as an
ultimate goal. Additionally, the digital revolution is continu-
ously breaking down barriers by proposing novel paradigms
(i.e., Internet of Things (IoT) [2]) and disruptive technologies
(i.e., Blockchain [3]) that are able to potentially change our
lives.

Nevertheless, the significant advance witnessed in recent
years also conveys some negative consequences. In fact,
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those crucial infrastructures are constantly targeted by attacks
perpetrated by malicious entities, aiming at disrupting the
availability of the provided services and threatening their con-
fidentiality and integrity [4], [5]. Such ill-motivated entities
are of a wide variety, from powerful institutions to skilled
individuals, due also to the easiness of finding attack source
code on the Internet, among other factors. Moreover, nations
are getting more and more affected by this battle, with the
conception of cyber warfare becoming a central matter within
defense agencies while cyberspace consolidates as a fifth
battle domain [6], [7].

Indeed, the security experts are registering a consistent
increase in the number of cyberattacks that remarks the
importance of posing cybersecurity as a fundamental pillar
in the defensive strategies [8]. In such a frightening scenario,
very few will oppose that selecting the optimal set of counter-
measures to react against those threats is of primary impor-
tance. Remarkably, such a selection needs to balance the
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inherent trade-off between the effectiveness of the reaction,
aiming at eradicating the attack from the protected system and
thus restoring a safe state and its potential negative impact (or
side effect) on the targeted assets [9].

Until now, several proposals have been presented to solve
the challenges posed by the reaction ecosystem. Concretely,
a plethora of literature works proposes cost-benefit quantita-
tive approaches in choosing the optimal set of countermea-
sures [10]. In some circumstances, those works leverage the
useful capabilities of Artificial Intelligence (AI) methodolo-
gies and bio-inspired approaches to determine the optimal
reaction in a semi-automatic or fully-automatic fashion [11].

Among those, AIS have been proved to comprise a promis-
ing paradigm in different areas of the cybersecurity ecosys-
tem [12]. Specifically, such a bio-inspired technique aims to
emulate the biological immune system’s behavior in various
applications of computer science. As the immune system
is able to recognize and fight against foreign and poten-
tially harmful entities to protect the human body, the AIS
try to shield the monitored assets from possibly dangerous
anomalies [13]. In this direction, AIS have been successfully
applied to solve security-related challenges in the field of
anomaly detection, intrusion detection, scan, and flood detec-
tion, among others [14]. Surprisingly, AIS capabilities have
not been thoroughly investigated when it comes to selecting
the optimal reaction to fire against appearing threats. Despite
this fact, and as pointed out in [15], their properties applied
to counteracting malicious cyber entities fit the needs of
related reaction frameworks, which may weaponize biologi-
cal principles like clonality, self-regulation, immunememory,
specificity, and so forth.

In order to contribute to mitigating this gap, an AIS-
powered reaction methodology is proposed, aiming at select-
ing and enforcing the optimal set of atomic countermeasures
on the assets of the protected system exposed to risk. By lever-
aging the standard countermeasures representation presented
in [16], the reaction phase entities are first translated to
the artificial immunological ecosystem. Then, an index to
evaluate the convenience of enforcing a particular atomic
countermeasure on an asset is proposed, namely, the coun-
termeasure benefit. Notably, such an index intends to capture
the quantitative characteristics of a countermeasure, i.e., its
effectiveness, impact, and cost. To this extent, since more
than a countermeasure may be enforced on the same asset,
a careful analysis is carried out to study from a quantita-
tive perspective the combined effect of multiple counter-
measures to be applied on such a same asset. Subsequently,
the AIS-powered reaction is presented, detailing the steps
needed to successfully respond and distinguish its properties
for static and dynamic reactions. In particular, the antibodies
are modeled as sets of atomic countermeasures that contin-
uously pass through cloning and mutation phases in order
to compute the optimal individual to adapt and fight against
artificial antigens (namely, the threats detected within the
protected system). To demonstrate the capability of the pro-
posed methodology, a broad experimental phase is provided,

resulting in minimizing the risk to which the assets are
exposed in a more than acceptable time window.

For easy reference, the main contributions of the paper at
hand can be summarized as follows:

• The proposal of a novel AIS-powered methodology
to select the optimal set of countermeasures to react
against potential cyberthreats. The adaptation of such
a bio-inspired technique to the reaction field per-
mits the acquisition of crucial AIS characteristics,
such as uniqueness, distributed reaction and self-
regulation, diversification, self-protection, and memo-
rization. In particular, the presentedmethodology avoids
minimizing risk blindly. That is, the calculated counter-
measures are enforced taking into account the acceptable
risk for each asset of the system.

• The AIS-powered reaction leverages a standard coun-
termeasures representation, which we believe would
be beneficial to foster the reaction knowledge sharing
among different security teams.

• The proposition of a metric to quantitatively estimate
the benefit of applying multiple countermeasures on the
same asset, i.e., the countermeasure benefit.

The remainder of this paper is organized as follows.
Section II presents some preliminary concepts on the AIS,
reviews and discusses recent proposals related to coun-
termeasures selection against threats, with particular focus
on the proposed standard representation of a countermea-
sure. In Section III, the methodology used to construct the
AIS-powered reaction is described, explaining the transla-
tion from cyberspace to the immunological sphere. Then,
in Section IV, theAIS-powered reactions are analyzed, detail-
ing the algorithms needed to achieve their purposes. Next,
Section V presents the results of the conducted experiments,
highlighting and discussing the advantages and drawbacks
of the methodology. Finally, Section VI concludes the paper,
proposing some interesting future lines to further contribute
to the reaction ecosystem.

II. BACKGROUND
Although both academy and industry are focusing their effort
around the cybersecurity context, some issues regarding the
reaction ecosystems are still unsolved [10]. As a matter of
example, potential tools to counteract ongoing threats are the
Intrusion Reaction Systems (IRSs), which are IDSs (Intrusion
Detection Systems) capable of reacting against suspicious
activities in real or near real-time [17]. Additionally, recent
efforts have been put to provide commercial SIEM (Security
Information and EventManagement) systemswith automated
response capabilities [5]. Those proposals indeed represent a
significant advance in the endless arms race among malevo-
lent entities and defensive teams, but one could say that there
is still a long way to go.

Next, we analyze the most recent and relevant works
regarding the countermeasures selection framework, high-
lighting their main properties and drawbacks. Then,
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we present some preliminary concepts to help readers fully
understand the features of the AIS field, which motivate the
presented methodology. Last but not least, the countermea-
sure standard proposal presented in [16] is summarized since
it represents an essential basis on which this work is built.

A. RELATED WORKS
Within the cybersecurity field, the reaction phase against
a cyberattack has been significantly less explored than the
detection one, mainly due to the open challenges that still
affect the response ecosystem, as well as a greater complexity
at empirically validating the research outcomes [18], [19].
In this direction, the work in [10] analyzed the major reaction
proposals from 2012 to 2017, highlighting their principal
advantages and potential deficiencies.

Besides, in [20], the integration of a Stateful Return on
Response Investment (StRORI) metric within Hypergraph
models was proposed to effectively evaluate the potential
application of countermeasures based on economic and threat
assessment parameters. By solving the challenges affecting
classic RORI-based models (i.e., do not consider the already
deployed countermeasures), such metric is able to rank coun-
termeasures also analyzing the previously implemented secu-
rity measures. Then, the efficacy of the presented model is
demonstrated by developing a prototype in a real use case
scenario, using the attack graph modeling. Notably, the Com-
mon Vulnerabilities and Exposures (CVE)1 and Common
Attack Pattern Enumeration and Classification (CAPEC)2 are
leveraged as standard knowledge bases of vulnerabilities and
attacks, respectively, to support their claims.

Additionally, a framework to respond to multi-path attacks
is presented in [21]. Specifically, the authors formulated
the problem of reacting to those attacks as an optimization
problem, which appears to be NP-hard. To resolve such a
problem, they proposed an ad-hoc greedy algorithm to select
the most appropriate countermeasures in a cost-sensitive way.
Authors leveraged the PART (Probabilistic Attack-Response
Tree) models to represent potential attacker movements and
evaluate three metrics: security benefit, deployment cost, and
negative impact. Moreover, the feasibility of the proposed
approach is later proved within a common virtual network
presenting known CVE vulnerabilities.

Also, authors in [22] proposed an approach to implement
a model-free IRS based on Deep Reinforcement Learning
(DRL). To deal with the size of modern network infrastruc-
tures and their non-stationary characteristics, the method-
ology utilized DRL to find near-optimal responses in an
acceptable time. More in detail, the system under protection
is modeled as a set of components that possess state variables
(i.e., active, updated, new version available, corrupted, vul-
nerable). The DRL learns from a simulated version of the
real system and then is tested on it in a successive phase
with a reward function based on execution time and cost of

1https://cve.mitre.org/
2https://capec.mitre.org/

the actions executed. Experiments are added to compare the
proposed DRL with Q-learning, focusing on non-stationary
systems, demonstrating its feasibility.

Furthermore, a methodology to generate fine-grained
response policies is presented in [23]. Starting from 4 fun-
damental questions about the reaction phase (i.e., which
countermeasures should be selected, where should they
be deployed, in what order multiple countermeasures are
deployed, and how long do the countermeasures last), the
authors proposed a decision-making framework for IRS that
optimizes the responses based on four metrics (i.e., attack
damage, deployment cost, negative impact, and security ben-
efit). To solve such an optimization problem, a Genetic
Algorithm with Three-dimensional Encoding (GATE) is
considered, where a set of meta-policies represents each
individual.

Moreover, the authors in [24] presented an innovative
methodology for picking countermeasures based on AI tech-
niques and the production of security metrics. The main goal
is to select accurate responses to cyberattacks in near real-
time, leveraging the data stemming from external security
data sources and SIEM systems. To further define relation-
ships among the various entities, an ontological strategy is
introduced, joint with the logical inference used to extract
knowledge. Then, the most probable attack path is predicted
using an attack tree to deploy the optimal remediations.

Likewise, authors in [25] developed a procedure to achieve
minimum cost defense in the context of Cyber-Physical Sys-
tems (CPS). In particular, such a procedure chooses optimal
defense nodes using the AtomAttack Defense Trees (A2DT),
which is a variant of the more conventional Attack-Defense
Tree (ADT)model. Then, the authors used an ad-hocmethod-
ology to solve the path calculation over the A2DT and
demonstrated its applicability through 2 use cases (i.e.,
Automated Teller Machine (ATM) and Supervisory Con-
trol And Data Acquisition (SCADA) systems). Similarly,
in [26], authors leveraged the ADT based onDirected Acyclic
Graphs (DAGs) and then extracted from an ADT its defense
semantics describing how the two actors (i.e., attacker and
defender) may interact. Later, the ADT is translated into an
Integer Linear Programming (ILP) problem that considers
the various constraints (e.g., economic, actions of the actors,
etc.). Notably, the authors developed an open-source tool to
automate the described methodology.

The described works represent an important step within
the reaction strategies ecosystem. Nevertheless, none of them
leverages the significant advantages given by the adoption
of a standard countermeasure representation. Moreover, very
few of them feature the adaptability of the selected counter-
measures against potential threats. It is clear that a method-
ology capable of adapting its response based on the asset
over time would be extremely valuable when it comes to
selecting the optimal set of countermeasures to counteract
threats within the network, considering the resource avail-
ability at any time. Then, another important lack is high-
lighted in the literature, that is, the reaction frameworks
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are applied to specific scenarios leveraging a comprehen-
sive knowledge of the protected system. One could argue
that, in order to be generic and thus applicable to sev-
eral contexts, the countermeasure strategy should possess
as little prior knowledge of the threats as possible. To this
extent, the AIS-methodology is able to provide countermea-
sures by leveraging the non-determinism of the solution.
In fact, the execution of the AIS-methodology may generate
more than one applicable countermeasure so that human
decision-makers can strategically select the best actions to
undertake from a set of potentially effective solutions.

B. ARTIFICIAL IMMUNE SYSTEMS
Living beings have developed multiple immune mechanisms
in an effort to battle against dangerous antigens harming their
health [27]. Those immune mechanisms form part of the bio-
logical immune system, which features high distribution and
parallelism within the organisms, with several cells, proteins,
and organs participating [28].

Within the digital world, AIS represent the equivalent of
the biological immune system to solve non-biological but
computational problems. In fact, the AIS aim to emulate the
mechanisms and behaviors observed by the immunologists in
order to be applied to a particular problem [15]. After a quite
complexmodeling phase, AIS have been successfully applied
to various fields of digital knowledge, including optimization
theory [29], data analysis [30], image recognition [31], and
computer security [32]. More specifically, AIS-based propos-
als have arisen to solve cybersecurity challenges for anomaly
detection, intrusion detection, malicious process detection,
scan and flood detection, and fraud detection, among oth-
ers [33]–[36] others. Those proposals rely on the capabilities
of four main bio-inspired techniques, namely, negative selec-
tion, clonal section, artificial immune networks, and Danger
Theory [28], [37], [38].

Specifically, the clonal selection theory indicates that
defined antibodies, in order to effectively counteract the mali-
cious antigens, iteratively pass through various steps, namely:
cloning, hypermutation, and selection phases. Throughout
each iteration, the antibodies are further improved, getting
closer to the optimal solution. In this direction, the CLON-
ALG algorithm was proposed in [39], aiming at solving
optimization and pattern recognition problems. Later on,
this algorithm has been used to answer cybersecurity-related
issues [40]. Also in this case, the modeling phase requires
a notable effort since the main components of the problem
that has to be solved need to be translated and encoded
into immuno-related elements to apply such a bio-inspired
technique.

As previously mentioned, several academic works pro-
posed the application of AIS to solve open challenges within
the cybersecurity field. In particular, those works leveraged
the capabilities of such a bio-inspired methodology to detect
a vast number of unknown patterns (nonself objects) from
normal ones (self objects), often using limited resources [41].
Nevertheless, recent studies reveal that a remarkable research

effort has been put on detecting the threats and that real-time
mitigation or response has not been considered that much,
though [15]. In this direction, it is worth remarking that the
existing tools to counteract cyberattacks (i.e., the abovemen-
tioned IRS and new-generation SIEM) do not integrate AIS
solutions within their capabilities.

C. COUNTERMEASURES STANDARD REPRESENTATION
One of the most prominent challenges within the reaction
ecosystem is the lack of a standard countermeasures rep-
resentation, whose direct consequence is the absence of a
commonly shared and widely adopted knowledge base of
remediations. To solve this issue, in our previous work [16],
we contributed to this field by proposing a representation
that details with fine granularity the fields needed to model
the remediation object accurately. We believe that such a
proposal is beneficial to foster the reaction knowledge sharing
among different security teams, thus building more robust
response plans as an ultimate goal.

cmID= (ID,Eff , Imp,Cost, �c, �p, �v, �a, φ︸ ︷︷ ︸
mandatory

,P, δ︸︷︷︸
optional

) (1)

The proposed definition is shown in Equation 1, while its
components are described in the following:

• ID ∈ N is the unique identifier of the countermeasure.
• Eff ∈ {L,M ,H ,X} represents the residual effectiveness
of the countermeasure, referring to its capability to neu-
tralize the threat.

• Imp ∈ {L,M ,H ,X} represents the residual impact of
the countermeasure since it can negatively impact the
corresponding asset(s) within the protected infrastruc-
ture.

• Cost ∈ R+ represents the residual cost of the counter-
measure, which contains deployment, maintenance, and
indirect costs.

• �c = {ci ∈ C} is the link to common configuration
knowledge base C to which the designed asset refers.

• �p = {pi ∈ P} is the link to common platform knowl-
edge base P to which the designed asset refers.

• �v = {vi ∈ V } is the link to common vulnerability
knowledge base V to which the exploited vulnerability
refers.

• �a = {ai ∈ A} is the link to common attack knowledge
base A which the countermeasure counteracts.

• φ describes the enforcement of the countermeasure in a
machine-readable format.

• P = {p1, p2, . . . , pn}, n ≥ 0 describes the parameter(s)
a certain countermeasure may need in order to be imple-
mented.

• δ includes additional information about the countermea-
sure, particularly:

– a textual description, in human-understandable
language.
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– a field indicating whether the deployment of the
countermeasure demands software or hardware
changes.

– a flag specifying if the countermeasure is static or
dynamic.

– a field expressing whether the countermeasure is of
short-term or long-term duration within the reaction
strategy.

– examples of the enforcement (e.g., in pseudocode).
– if applied for cyber defense, linkage to military tac-

tical, strategic, or operational decisions, which may
provide structures describing, among others, related
Courses of Action (CoA), command hierarchy, or
mission-centric expected impacts.

In particular, the discrete values proposed for the residual
effectiveness, impact and, cost stay for Low (L), Medium
(M), High (H), andNot Defined (X), respectively. We indicate
those values as residual since they represent intrinsic values of
the countermeasure that persist during the time. Then, when
a certain countermeasure has been selected to be enforced
on a specific asset, it assumes real effectiveness, impact, and
cost values, which also rely on other parameters which are
connected to the countermeasure object itself, such as the
dependencies among the corrupted services, the time needed
to be implemented, or the perception of military-strategic
planes, to cite some examples.

In addition to the presented fields, another parameter is
introduced to further corroborate the reaction steps. That is,
M ∈ [0, 1] defines the maturity of a previously-hardened
countermeasure enforced within the system. Specifically,
M takes into account how effective the enforcement of a
security measure was on a certain asset of the system during a
specific period. Obviously, if such enforcement was effective
(e.g., by blocking an attack targeting an asset), the coun-
termeasure tends to be considered as more mature and thus
fired again against similar threats against similar assets. The
maturity M of a countermeasure is calculated as the number
of times the countermeasure has been effective Ns divided
by the total number of implementations Ns + Nf , where Nf
symbolizes the number of times the countermeasure failed to
counteract the threat, as shown in Equation 2.

M(cmi) =
Ns

Ns + Nf
(2)

III. METHODOLOGY
In the light of the above, an adaptation of the AIS algo-
rithm is proposed, aiming to cherry-pick the optimal set
of countermeasures to fire against a cyberthreat occurring
within the protected system. It has to be remarked that the
AIS-powered selection of countermeasures covers the entire
spectrum of the reaction ecosystem. Specifically, it can be
fired at a preventive phase due to its ability to prevent poten-
tial threats from happening, or at a reactive stage since it also
is capable of eradicating an ongoing attack and remedying
its adverse effects. In the context of this research, the authors

distinguished between i) static countermeasure, referring to
its preventive capabilities, and ii) dynamic countermeasure,
indicating its reactive ones [16]. Thus, valuable features of
the AIS methodology are imported to the reaction context,
and listed in the following:
• Uniqueness: like in the immune system, each reaction
here is unique against a specific threat.

• Distributed reaction and self-regulation: no central
coordination and control are required during the reactive
immuno-operation.

• Diversification: clonal selection and hypermutation
constantly compute and present better responses to
shield the system assets under attack.

• Self-protection: the reactive immuno-reaction protects
nothing else but the designed assets, generating a tai-
lored response while minimizing the negative impact.

• Memorization: reaction information is saved to opti-
mize responses in the future.

By adopting the aforementioned features, one could easily
say that the enforced reaction exhibits the desired properties
in an effort to be optimal.

A. RATIONALE
Before analyzing the proposed AIS methodology to select
the countermeasures, some fundamental concepts must be
explained to understand further the cybersecurity context in
which such immuno-algorithm is applied. Indeed, an appro-
priate modeling phase is fundamental to propose an AIS
solution that can solve the problem correctly [15].

First, the system under protection can be modeled as a
collection of several assets. Those assets present distinct soft-
ware and hardware configurations and are deployed to exe-
cute various tasks. For instance, a web server that is in charge
of serving requests coming from the Internet, a database
that memorizes data of interest, or a firewall that filters the
incoming connections, to name a few. It is worth noticing
that the number of assets composing the ICT infrastructures
nowadays is huge due to the central role of those systems in
humans’ everyday life.

A = {A1,A2, . . . ,ANA} (3)

Specifically, Equation 3 clarifies the set of assets A of the
entire system of cardinality NA, where Ai represents a generic
asset. Each of those assets possesses a value indicating its crit-
icality CR(A) ∈ [0, 1]. Such a value indicates the importance
of the asset for the network from a strategic or economic per-
spective, where 0 denotes a low critical asset, while 1 stands
for a highly critical one. For example, the database storing
the personal data of the employees can be considered of
high value for an enterprise, thus the corresponding criticality
value is expected to be high (e.g., CR(database) = 0.9).
Obviously, the assets of the systems are prone to expose

security vulnerabilities. In this sense, the number and fre-
quency of newly-discovered vulnerabilities are constantly
increasing, posing a complex challenge to the CSIRT (Com-
puter Security Incident Response Teams). Such growth is
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mainly due to the sophistication of modern assets but also
to the high demand for new market-ready functionalities [1].
Vulnerabilities scanners normally report the vulnerabilities
by means of vulnerabilities reports.3 Thus, each asset of the
network is connected to a vulnerabilities set, assuming that an
asset can possess one or more vulnerabilities simultaneously.

V (Ax) = {VAx1,VAx2, . . . ,VAx l} (4)

V = {V1,V2, . . . ,VNV } =

( NA⋃
x=1

V (Ax)

)
(5)

Explicitly, each asset Ax of the system is associated with
its vulnerabilities set V (Ax) characterized by a certain num-
ber of vulnerabilities VAx i, as shown in Equation 4. To this
extent, the union of the vulnerabilities set of all the assets
is represented as V (see Equation 5), where Vi means a
generic vulnerability within the entire system. Furthermore,
the vulnerabilities of the assets can be potentially exploited
by cyberattacks performed by ill-motivated entities, aiming
at violating or interrupting their confidentiality, integrity, and
availability (CIA). Such attacks are growing in complexity
and power: multi-steps and zero-day attacks represent clear
examples in this sense [21]. In this context, we denote ongo-
ing attacks happening within the network with:

T = {T1,T2, . . . ,TJ } (6)

Equation 6 refers to the attack set T composed by all the
ongoing individual attacks Ti. Those attacks are unknown
to the system before potential security incidents manifest,
and they are detected by the security devices (e.g., IDSs,
firewalls, etc.) deployed within the network. Those security
devices, together with the vulnerability scanners, represent
the detectors of the potential anomalies.

Both vulnerabilities V and attacks T that may appear
within the network are considered threats against the assets.
In particular, we denote such threats with τ (as reported in
Equation 7). Referring to the AIS methodology, they repre-
sent the antigens against which the selection of countermea-
sures generates the response using antibodies.

τ = T ∪ V = T ∪

( NA⋃
x=1

V (Ax)

)
(7)

To counteract the threats jeopardizing the assets of the
system under protection (i.e., vulnerabilities or attacks), sev-
eral countermeasures can be enforced during the reaction
phase. That is, we pinpoint those remediation objects in a
countermeasure set CM , representing the total number of
countermeasures that can be enforced on the entire assets
set A:

CM = {cm1, cm2, . . . , cmN } (8)

Concretely, Equation 8 illustrates the countermeasure set
CM constituted of N countermeasures cmi. It has to be

3https://www.bmc.com/blogs/vulnerability-reports/

stated that the countermeasures belonging to the aforemen-
tioned set have to be considered as atomic objects, meaning
that each one of them represents a fine-granularity reac-
tion step. Besides, the countermeasures set features high
dynamism within the reaction strategy since the included
atomic countermeasures can be deleted (e.g., an individual
asset or threat does not exist anymore in the system) or
added (e.g., the appearance of new assets or threats) over
time. Additionally, the countermeasures are stored following
the standard representation described in Section II-C. Those
objects represent the antibodies that the AIS-powered coun-
termeasure system will select to fight against the antigens.
Possible examples of countermeasures are ‘‘update software’’
in the context of a static reaction or ‘‘stop service’’ for a
dynamic reaction.

More specifically, for each asset of the network, a subset of
the entire countermeasures set is defined. Those remediations
are tailored for a certain asset (e.g., software and hardware
configuration, etc.), considering the vulnerabilities or the
attacks that can threaten it. Besides, we assume that one or
more countermeasures can be enforced simultaneously on the
asset to fight against possible threats. Therefore, we denote
the countermeasures setCM (Ax) containing the atomic coun-
termeasures cmAx i that can be enforced on the asset Ax in
Equation 9; so CM (Ax) can be understood as an action plan
that describes the sequence of cmAx i countermeasures against
the situation that triggered the execution of the bio-inspired
algorithm. Precisely, each countermeasure set CM (Ax) of the
asset Ax is contained within the countermeasure set CM .

CM (Ax) = {cmAx1, cmAx2, . . . , cmAx j}

CM (Ax) ⊆ CM (9)

B. COUNTERMEASURE BENEFIT
The selection of the optimal set of countermeasures has
to consider the inherent tradeoff between the effectiveness
of the remediation and its negative impact and cost [42].
Such balance burdens on the security administrator that has
to maintain an adequate level of protection with a lim-
ited budget. Bearing this in mind, in the context of this
research, we propose an index to evaluate the convenience
of enforcing a certain atomic countermeasure cmi. That is,
the countermeasure benefit (B ∈ [0, 1]) uses the fields
Effectiveness, Impact,Cost ∈ [0, 1] fields of the standard
representation in Section II-C to measure such convenience,
as shown in Equation 10:

B(cmi) = ω × (Eff (cmi))
1−
(
Imp(cmi)+Cost(cmi)

2

)
(10)

Nevertheless, B(cmi) is shifted to reside in the interval
[1, 10] by adding ω in Equation 10 to preserve the com-
patibility with other security scoring systems. Consequently,
if the enforcement of a certain atomic countermeasure does
not worsen the security attributes of the assets, then B > 1.
By default, the value B = 1 is reserved to the spe-
cial countermeasure ‘‘no action’’ featuring the lowest B
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(i.e., B(no action) = 1). Note that the proposed B considers
the composing parameters as equally important. Nonethe-
less, weights may be added to the equation to give more
significance to a certain parameter. For instance, Cost can
be more relevant in situations where the budget constitutes
a considerable limitation. For a quick reference, Figure 1
illustrates the trend of the parameters composing benefit B
in a 3D graph.

FIGURE 1. Benefit of a countermeasure cmi , B(cmi ), based on its
effectiveness, impact, and cost.

As previously mentioned, one or more countermeasures
can be simultaneously enforced on a single asset. To this
extent, a crucial point is the study of how the atomic coun-
termeasures combine their effect in an effort to determine
which ones should be activated. Recent works propose to
compute the joint effect of countermeasures by using the
attack surface or the vulnerabilities coverage [43]. Never-
theless, such a methodology assumes previous knowledge
of potential vulnerabilities present within, or attacks against,
the protected system. In this work, we adopt a defensive
perspective with no former knowledge of vulnerabilities or
attacks till they are detected. The main reasoning behind
this choice lies in the fact that the countermeasures selec-
tion system needs to be as generic as possible, so it would
be possible to apply the proposed methodology to different
scenarios.

Thus, given two candidate atomic countermeasures cmi
and cmj that must be enforced on the same asset, evaluating
the combination of the effects of those countermeasures is
essential. On the one hand, if the enforcement of cmj does
not improve the effects arising from the enforcement of cmi,
then one infers that the countermeasures are not combinable.
To this extent, the combined benefit B of the enforcement of
cmi and cmj results to be the maximum of the benefit among
those, as shown in Equation 11:

B({cmi, cmj}) = max(B(cmi),B(cmj))

if cmi, cmj are not combinable (11)

Such a situation represents the worst possible combination
since we assume that the implementation of a security mea-
sure does not decrease the total benefit. More specifically,
the enforcement of an atomic countermeasure generates a

benefit B > 1 that does not interfere with the enforce-
ment of another one. Then, the goodness of an antibody
(i.e., a set of atomic countermeasures) is refined during
the AIS-powered algorithm of reactions, as we will see in
Section IV. Thus, the combined value defined in Equation 11
establishes the lower bound of the combined benefit of two
countermeasures.

On the other hand, if the enforcement of cmj definitely
enhances the effects generated by the enforcement of cmi,
one says that the countermeasures are perfectly combinable.
In this case, the combined benefit B of the enforcement of
cmi and cmj can be defined as the sum of the single benefit
of those countermeasures limited by the maximum possible
value of this parameter (i.e., 10), as reported in Equation 12:

B({cmi, cmj}) = min(B(cmi)+ B(cmj), 10)

if cmi, cmj are perfectly combinable (12)

This condition expresses the best possible combination,
so the combined value illustrated in Equation 12 deter-
mines the upper bound of the combined value of two
countermeasures.

Consequently, the value of the combined benefit
B({cmi, cmj}), based on the combinability of cmi and cmj,
can be defined as:

max(B(cmi),B(cmj))︸ ︷︷ ︸
if cmi,cmj are not combinable

≤B({cmi, cmj})

≤ min(B(cmi)+B(cmj),10)︸ ︷︷ ︸
if cmi,cmj are perfectly combinable

(13)

That is, Equation 13 states that the benefit B({cmi, cmj})
of two countermeasures swings in a range depending on how
much the effects of those reaction steps are combinable, being
limited by the lower and upper bounds.

At this point, it is clear that the knowledge on howmuch the
effect of two countermeasures can be combined is extremely
valuable in an effort to calculate the combined benefit B.
Nonetheless, one could easily argue that the analysis of all
possible combinations of enforcement of atomic counter-
measures, against all potential threats (during the static or
dynamic reaction) is not viable. Moreover, the set of atomic
countermeasures is highly dynamic, as remarked before.
Additionally, as mentioned before, the proposed countermea-
sures selection methodology should be as generic as possible.
To tackle this challenge, we propose a simple but effective
approach to compute the combined benefit B({cmi, cmj}) of
two countermeasures cmi and cmj, defined as the midpoint of
the interval illustrated in Equation 13:

B({cmi, cmj})

=
max(B(cmi),B(cmj))+min(B(cmi)+B(cmj), 10)

2
(14)

Generalizing Equation 14 to N possible countermeasures
in the countermeasures asset CM , the benefit of enforcing N
atomic countermeasures on a specific asset is expressed in
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Equation 15:

B({cm1, cm2, . . . , cmN })

=

max1≤i≤N (B(cmi))+ min

(
N∑
i=1

B(cmi), 10

)
2

(15)

C. RISK LEVEL EVALUATION
The selection of the optimal set of countermeasures, and its
subsequent enforcement, aims at protecting the assets of the
system by tuning the risk level as an ultimate goal. Hence,
we define the risk level RL(τk ,Ax ,CMj(Ax)) ∈ [0, 10] (where
RL = 0 represents a situation of no risk, while RL = 10
expresses an extremely-high risk one) of a certain asset Ax ,
facing the threat τk , and protected with the set of atomic
countermeasures CMj(Ax), as:

RL(τk ,Ax ,CMj(Ax)) =
P(τk ,Ax)× I (τk )× CR(Ax)

B(CMj(Ax))
s.t. 0 ≤ P(τk ,Ax) ≤ 1

1 < I (τk ) < 10

0 < CR(Ax) < 1

1 ≤ B(CMj(Ax)) ≤ 10 (16)

In Equation 16, several parameters are considered to cal-
culate the risk level correctly. First, P(τk ,Ax) represents the
probability of the occurrence of the threat τk over the assetAx .
Second, I (τk ) expresses the negative impact of the threat
τk on the asset Ax or the normal network operations. Then,
the criticality of the asset CR(Ax) is added since we assume
that the more critical the asset is, the higher the risk level.
In an effort to reduce the risk, a set of countermeasures can
be potentially enforced, generating a benefit B(CM (Ax)).

In this direction, enforcing a set of countermeasures on a
specific asset should avoid risk minimization blindly. In fact,
the implementation of security measures should prevent both
the underprotection or overprotection conditions over the
assets of the system. For instance, excessive enforcement of
countermeasures may result, on the one hand, in overpro-
tecting the assets, minimizing the risk more than necessary
(and possibly impacting their usability and consuming more
resources). Thinking to scenarios in which the availability
of the resources is acutely low and controlled (e.g., IoT
scenario), employing more resources than the ones that are
effectively needed is not recommended. On the contrary,
an incorrect selection of countermeasures may culminate in
underprotecting the assets, exposing them to concrete threats,
which in critical scenarios may cause high risks for the entire
system. To solve such a problem, the acceptable risk level
R̃L(Ax) ∈ [0, 10] is assigned to each asset of the network Ax ,
and is defined as:

R̃L(Ax) = α × (1− CR(Ax)) (17)

As seen in Equation 17, such an important parameter is
directly derived from the criticality CR(Ax) of the asset Ax by

adding the scaling factor α = 10. In particular, if the asset
Ax is highly critical (e.g., CR(Ax) ≈ 1), the corresponding
acceptable risk level is extremely low (e.g., R̃L(Ax) ≈ 0).
This means that, in case of the appearance of any threat
jeopardizing Ax , the countermeasures selection strategy shall
enforce efficient security measures to reduce the risk level
RL(Ax) to R̃L(Ax). On the contrary, if Ax possesses a low
criticality value (e.g., CR(Ax) ≈ 0), the acceptable risk level
is quite high (e.g., R̃L(Ax) ≈ 10). In this case, if any threat
appears, the selectionmethodologymay decide not to enforce
countermeasures at all or remove them from the selection.
Bearing this in mind, the optimal selection of countermea-

sures is in charge of minimizing the difference between the
measured risk level RL and the acceptable risk level R̃L of
each asset Ax of the system threatened by τk , as shown in
Equation 18. From now on, function f is referred to as fitness
function.

min
CMj(AX )

f = |RL(τk ,Ax ,CMj(Ax))− R̃L(Ax)| (18)

Particularly, since the value of the fitness function belongs
to the interval [0, 10], Equation 18 directly indicates that a
lower value of fitness implies a better solution. It is worth
remarking that, in the case of a static reaction, the threat τk is
replaced by a vulnerability VAxk , while, during the dynamic
reaction, τk is represented by an attack Tk . Moreover, when
it comes to cherry-picking the correct countermeasures, it is
possible to leverage the flag presented within the counter-
measures standard representation in Section II-C that indi-
cates whether the countermeasure features static or dynamic
characteristics.

IV. AIS-POWERED REACTION
As previouslymentioned, theAIS-powered selection of coun-
termeasures embraces both static and dynamic reactions.
Throughout this Section, particular focus is given to the
methodologies to effectively react to malicious events threat-
ening the assets of the system under protection. In particular,
the algorithms presented next must be considered part of the
paper’s contribution since they represent a novel adaptation
of the AIS to the reaction ecosystem. For a quick reference,
Figure 2 illustrates the flow of events and the main compo-
nents involved within the static and dynamic reactions that
will be detailed next.

A. AIS STATIC REACTION
If any dangerous vulnerability is exposed by an asset within
the network, the AIS static reaction is in charge of intervening
in a preventive fashion. Recalling Equation 16, the risk level
for the AIS static reaction can be defined as follows:

RL(VAxk ,Ax ,CMj(Ax)) =
P(VAxk ,Ax)× I (VAxk )× CR(Ax)

B(CMj(Ax))
(19)

Specifically, the vulnerability VAxk represents the antigen
against which the antibodies (i.e., set of atomic countermea-
sures CMj(Ax) of the asset Ax) must be selected. Besides,
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FIGURE 2. High-level architecture for AIS-powered reactions.

P(VAxk ,Ax) represents the probability that the vulnerability
VAxk of the asset Ax is exploited. Then, I (VAxk ) measures the
impact that the exploitation of the vulnerability VAxk has on
the asset and, consequently, on the system. Both P(VAxk ,Ax)
and I (VAxk ) can be directly derived from Common Vulnera-
bility Scoring System (CVSS4) fields related to VAxk . Since
an asset can expose one or more vulnerabilities simultane-
ously, a risk level calculation must be computed for each
vulnerability. Thus, the main goal of the AIS static reaction
is to calculate the optimal set of countermeasures CMj that
minimizes the fitness function f . More specifically, for each
asset Ax of the system exposing vulnerabilities V (Ax), such a
function is calculated as the difference between (i) the sum of
the measured risk levels RL generated by the vulnerabilities
divided by the number of vulnerabilities of the asset V (Ax)
and (ii) the acceptable risk level R̃L of those assets, normal-
ized by NA, as shown in Equation 20:

min
CMj

f =

∑NA
x=1

∣∣∣∣∑Vi∈V (Ax )
RL(Vi,Ax ,CMj(Ax ))
|V (Ax )|

− R̃L(Ax)

∣∣∣∣
NA

(20)

The pseudocode of the AIS static reaction is reported in
Algorithm 1. To this extent, we assume that a certain number
of vulnerabilities scanners S ∈ S are deployed within the
network. Those tools are in charge of scanning the assets
of the network with a determined frequency (e.g., once per
hour) to spot potential vulnerabilities. Concretely, lines 1-7
describe the task of the vulnerabilities scanners S in search
of potential vulnerabilities Vi, which perform as antigens in
the proposed static version of AIS methodology. Whenever
a previously unknown vulnerability is found, a vulnerability
report vri is created and sent to the SIEM for further analysis.
In particular, this report contains vital information such as the

4https://www.first.org/cvss/

asset that exposes the vulnerability, the ID, and the severity of
the vulnerability, among others. A widely-used vulnerability
scanner is OpenVAS,5 an open-source and powerful vulner-
ability assessment tool capable of vulnerability scanning and
management. It identifies the active services, open ports, and
running applications across the machines.

Furthermore, in lines 8-14, the SIEM receives the vulnera-
bility reports and inspects the information contained in them.
Specifically, for each asset Ax that presents a vulnerability
Vi, the correlated parameters P(Vi,Ax), I (Vi), and CR(Ax)
are extracted (line 10) in an effort to determine the risk level
RL associated with the specific vulnerability in the absence
of implemented countermeasures (line 12). Bear in mind
that B = 1 in case of ‘‘no action’’, that is, the absence of
implemented countermeasures, as initialized in line 11.

Then, lines 15-22 detail the AIS static methodology to
select the optimal set of countermeasures. More in detail,
an initial set of random solutions CM is generated (line 15).
This set contains the antibodies used to fight against the
antigens (i.e., vulnerabilities). Each one of the antibodiesCMj
is, in turn, a set of atomic countermeasures to be implemented
on each asset Ax that exposes a vulnerability Vi. In order to
improve the initial generation of the solution, it is possible to
leverage the maturity field M (Equation 2). That is, if any
of the atomic countermeasures possesses a high maturity
score against a particular vulnerability, it can have a higher
probability of belonging to the initial set of solutions.

Once the initial generation has been performed, the affinity
of the antibodies is calculated (line 17). The pseudocode of
this function is reported in Algorithm 2. In particular, for each
asset Ax presenting a vulnerability Vi and for each atomic
countermeasure cmk assigned to the solutions CMj ∈ CM,
the benefit B of the countermeasures (Equation 10) and the

5https://www.openvas.org/
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Algorithm 1 AIS Static Reaction(S,CM)
Require: S 6= null F Active vulnerability scanners
Require: CM 6= null F Countermeasures knowledge
1: for all S ∈ S do
2: Scan the network to spot vulnerabilities
3: for all Vi detected & Vi 6∈ V do F If any new vulnerability is detected
4: Create vulnerabilities report vri and send it to the SIEM
5: V ← V ∪ {Vi}
6: end for
7: end for
8: for all Vi ∈ V do F SIEM analyzes the vulnerabilities reports
9: for all assets Ax exposing Vi do

10: Extract the associated parameters P(Vi,Ax), I (Vi),CR(Ax)
11: CM (Ax) = {no action}
12: Compute RL(Vi,Ax) F Risk level calculation with no cm enforced
13: end for
14: end for
15: Generate initial random solutions CM← {CM1,CM2, . . .} F Antibodies (sets of atomic cms)
16: while stop condition is not met do
17: Determine affinity of Antibodies sets F Evaluation of the risk
18: Clone Antibodies with best affinity F Number of clones proportional to the affinity
19: Mutate attributes of the clones F Add or remove cms from CM
20: Replace antibodies with lowest affinity F Remove bad solutions
21: CM ← Best Antibody
22: end while
23: for all cm ∈ CM do F Atomic cm in the best solution
24: Update links to external security knowledge bases
25: Update M F Update Maturity
26: V ← ∅
27: end for

RL (Equation 19) are calculated. To this extent, if more coun-
termeasures have been selected as a solution to be enforced
on the same asset Ax , the combined benefit B(CMj(Ax)) must
be evaluated as shown in Equation 15. Then, for each CMj ∈

CM, the corresponding fitness function f (CMj) is calculated
as illustrated in Equation 20. Besides, the average affinity of
the antibodies is computed.

Later, in line 18, the antibodies with the highest affinity
(i.e., sets of atomic countermeasures which minimize the
function f ) are cloned, as shown in Algorithm 3. Concretely,
the solutions CMj ∈ CM are ordered by increasing fitness
function f , and consequently, the K best CMj are cloned, thus
expanding the solutions space CM. At this stage, a crucial
point is the correct selection ofK . On the one hand, a reduced
number of clones may avoid creating a broad population
(which leads to diversity in the solution). On the other hand,
the generation of several clones may slacken the convergence
of the algorithm toward acceptable solutions. In this direction,
a potential improvement is the selection of K proportional to
the fitness function f . For instance, if such a function has not
been sufficiently minimized (because of the low affinity of
the antibodies), the number of clones may be higher to further
explore the solutions space to search for better solutions.

Afterward, the produced K clones {CMj1 , . . . ,CMjK } are
mutated (line 19), as illustrated in Algorithm 4. More specifi-
cally, each set of atomic countermeasures (i.e., cloned anti-
body) undergoes through a mutation consisting of adding
or removing an atomic countermeasure from the set with a
certain probability P. To this extent, the proposed mutation
adds or removes one atomic countermeasure from a clone
CM generating CM ′ with the same probability P = 0.5.
Then, the affinity of the mutated clones f (CM ′) is computed
(i.e., the fitness is evaluated). If such affinity is greater than
the average affinity of the antibodies in the solution space
avg_affinity(CM) (i.e., the atomic countermeasures of the
clones are not effective against the vulnerabilities), then those
clones are removed. Otherwise, they become part of the
solutions set CM, replacing the lowest affinity antibodies in
CM at that instant.

Next, in line 20, the antibodies with the lowest affin-
ity are removed from the solution space, as reported in
Algorithm 5. In particular, the K sets of atomic coun-
termeasures that exhibit the lowest value for the fitness
function f are eliminated from the solutions set CM,
and, therefore, they are replaced with K random sets.
Also in this case, as for the initial random generation
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Algorithm 2 Determine_Affinity(V ,A,CM)
1: for all Vi ∈ V do F For each detected vulnerability
2: for all assets Ax ∈ A exposing Vi do F For each involved asset
3: for all CMj ∈ CM do F For each antibody
4: for all cmk ∈ CMj do F For each atomic countermeasure
5: Calculate B(cmk )
6: end for
7: if ∃ CMj(Ax) ⊆ CMj s.t. |CMj(Ax)| > 1 then F If two or more atomic cms enfornced on the same asset
8: Calculate combined benefit B(CMj(Ax))
9: end if
10: Evaluate the risk RL(Vi,Ax ,CMj(Ax)) F Calculate risk of each antibody
11: end for
12: end for
13: end for
14: for all CMj ∈ CM do
15: Evaluate f (CMj) F Compute fitness of each antibody
16: end for
17: avg_affinity(CM)←

∑
CMj∈CM f (CMj)/|CM| F Average affinity of the antibodies

Algorithm 3 Clone_Antibodies(CM)
1: for all CMj ∈ CM do
2: Order by f (CMj)
3: end for
4: Clone K best CMj, {CMj1 , . . . ,CMjK } F K proportional to fitness function f

Algorithm 4 Mutate_Clones
(
{CMj1 , . . . ,CMjK }

)
1: for all K clones CM ∈ {CMj1 , . . . ,CMjK } do
2: P← random(0, 1)
3: if P > 0.5 then FWith probability P = 0.5
4: Add random cm to CM to produce CM ′

5: else FWith probability ¬P = 0.5
6: Remove random cm to CM to produce CM ′

7: end if
8: Evaluate f (CM ′) F Determine the affinity of the mutated clone CM ′

9: if f (CM ′) > avg_affinity(CM) then
10: Discard mutated clone CM ′

11: else
12: Replace lowest affinity antibody in CM with CM ′

13: end if
14: end for

Algorithm 5 Replace_Antibodies(CM)
1: Eliminate K lowest affinity CM from CM
2: Add K randomly generated CM to CM

(line 15), the maturity M of the countermeasures may be
considered.

Finally, the best antibody is assigned to the final solution
(line 21). The loop of lines 16-22 of Algorithm 1, containing
the AIS static reaction methodology, continues till the stop
condition is not met. Thus, it is clear that the choice of a
correct stop condition is fundamental to execute an adequate

number of iterations. In this direction, since the AIS static
reaction is executed in a preventive fashion (i.e., the vulner-
abilities are present within the system but are not currently
under exploitation), it is coherent to assume that the algo-
rithm can be run off-line and with a sufficient number of
iterations. Besides, the stop condition can be further enriched
by adding finer-granularity options, such as the acceptable
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risk level R̃L, timing conditions, or a combination of
those.

Thus, the selected antibody possesses the best fitness
value, minimizing the difference between the measured
and the acceptable risk levels. The atomic countermeasures
included in the antibody may be presented to the human
decision-maker (e.g., the system administrator) that is in
charge of selecting its enforcement based on the most suitable
strategy for the system. In the case that the proposed solution
does not satisfy the criteria (e.g., low quality of the solution
due to incorrect setting of the stop conditions), the decision-
maker may decide to relaunch the algorithm assuming a more
resource-consuming execution (in terms of time or memory,
for instance), which may have a greater likelihood of finding
better results due to the non-determinism of the algorithm.

Once the loop in lines 16-22 terminates its execution, and
consequently, the best antibody has been found, the atomic
countermeasures composing the solution undertake an updat-
ing process (lines 23-27). Following the principles of the
standard representation in Section II-C, the links to the exter-
nal common security knowledge bases are updated, as well
as the maturity of the atomic objects. For instance, if the
selected countermeasures have successfully covered a set
of vulnerabilities, a connection with the external knowledge
base of vulnerabilities is created (e.g., a link with the CVE).
Then, the vulnerability set V is emptied.

B. AIS DYNAMIC REACTION
Whenever an ongoing attack actively targets an asset of the
network, the AIS dynamic reaction is fired in an effort to
eradicate it. Regarding Equation 16, the risk level in the case
of dynamic reaction can be characterized as follows:

RL(Tk ,Ax ,CMj(Ax)) =
P(Tk ,Ax)×I (Tk )×CR(Ax)

B(CMj(Ax))
(21)

More in concrete, the attack Tk represents the antigen
against which the antibodies (i.e., the set of atomic counter-
measures CMj(Ax) of the asset AX ) must be selected. In addi-
tion, P(Tk ,Ax) expresses the probability that the attack Tk is
currently affecting the asset Ax . Contrary to the AIS static
reaction, such a probability can be directly acquired by the
security devices (e.g., IDS, firewall, etc.) which reported the
attack. Then I (Tk ) measures the impact of the ongoing attack
on the targeted asset and, subsequently, the entire system.
In this case, I (Tk ) can be determined from the CVSS field
related to the vulnerability that the attack is exploiting. It has
to be stated that we assume that a certain asset can be targeted
by one specific attack at a time.

For the dynamic reaction, some additional concerns need to
be considered. First, since a particular asset of the network has
been compromised, the AIS selection of countermeasures has
to protect this asset but also the connected ones (logically or
physically). We refer to those assets connected with Ax , plus
Ax itself, as Y (Ax) = {Ax ,Ax1 ,Ax2 , . . . ,Axy}. This choice lies
in the fact that, under this situation, it is coherent to assume
that the attacker may target other assets in an escalation to

reach his/her ultimate goal [44]. That is, in the context of
multi-step attack scenarios, CVSS scoring may be framed
within the environmental threat conditions (e.g., collateral
damage potential, target distribution, etc.). To achieve this
goal and, consequently, counteract multi-step attacks, the AIS
methodology can leverage high-quality attack models such
as attack graphs [45] or service dependency graphs [46] to
evaluate which other assets of the network present a higher
risk and with which probability. Such a probability is also
used to compute Equation 21 when it comes to protecting
the connected assets. Besides, by looking at the standard
representation in Section II-C, it is possible to leverage the
parameters presented in the optional fields. Specifically, for
certain countermeasures, some parameters can be defined in
order to be executed on the targeted asset. With this field,
the parametric countermeasure is enforced using only the
amount of resources that are effectively needed to respond
to the threat. Examples of combinations of reaction steps and
parameters are, say, ‘‘reduce bandwidth by 50%’’ or ‘‘block
IP address for 30 minutes’’, and so forth. Thus, a parametric
countermeasure can be formally defined as:

cmAx i,pk = {cmAx i|p = pk} (22)

Equation 22 describes that a certain atomic countermeasure
cmAx i belonging to the countermeasures set of the asset Ax is
parametric, and its enforcement parameter is pk .

Hence, the main objective of the AIS dynamic reaction is
to compute the optimal set of countermeasures CMj(Ax) that
minimizes the fitness function f . This function is computed
as the difference between (i) the measured risk level RL
generated by the ongoing attack Tk on the assets belonging
to Y (Ax) and (ii) the acceptable risk level R̃L of those assets,
normalized by |Y (Ax)|, as depicted in Equation 23.

min
CMj

f =

∑
Ax∈Y (Ax )

∣∣RL(Tk ,Ax ,CMj(Ax))−R̃L(Ax)
∣∣

|Y (Ax)|
(23)

Algorithm 6 contains the pseudocode of the AIS dynamic
reaction. In this direction, we assume that a finite number of
IDSs I ∈ I (or related cyber sensing capabilities, services,
functions, etc.) are deployedwithin the system. Those devices
are in charge of detecting potential intrusionswhich can target
a specific asset. In particular, lines 1-6 describe the job of the
IDSs I hunting for ongoing attacks T , which act as antigens in
the presented algorithm. Whenever a new attack is detected,
an intrusion detectionmessage is shaped and sent to the SIEM
for further investigation. To this extent, the intrusion detec-
tion message encapsulates meaningful information about the
attack, such as the targeted asset, the exploited vulnerability,
the source, and so forth. In this direction, Intrusion Detec-
tion Message Exchange Format (IDMEF) [47] and Incident
Object Description Exchange Format (IODEF) [48] can be
seen as the de facto standards to exchange intrusion detection
messages.

Moreover, in lines 8-14, the SIEM analyzes the received
messages. Concretely, for each asset Ax included in Y (Ax)
(i.e., targeted assetAx and connected ones), the corresponding
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Algorithm 6 AIS Dynamic Reaction(I,CM)
Require: I 6= null F Active IDSs
Require: CM 6= null F Countermeasures knowledge
1: for all I ∈ I do
2: Monitor the network to detect intrusion
3: for all Tk detected & Tk 6∈ T do F If any new intrusion is detected
4: Send intrusion detection message idi to SIEM
5: T ← T ∪ {Tk}
6: end for
7: end for
8: for all Tk ∈ T do F SIEM analyzes the intrusion detection messages
9: for all asset Ax ∈ Y (Ax) do
10: Dynamically extract the associated parameters P(Tk ,Ax), I (Tk ),CR(Ax)
11: CM (Ax) = no action
12: Compute RL(Tk ,Ax) F Risk level calculation with no cm enforced
13: end for
14: end for
15: Generate initial random solutions CM← {CM1,CM2, . . .} F Antibodies (sets of atomic cm)
16: while stop condition is not met do
17: Determine affinity with Antibodies sets F Dynamic evaluation of the risk for the assets
18: Clone subset of Antibodies with best affinity F Number of clones proportional to the affinity
19: Mutate attributes of the clones F Add or remove cms, or modify parameters
20: Replace low affinity antibodies F Remove bad solutions
21: CM ← Best Antibody
22: end while
23: for all cm ∈ CM do F Atomic cms in the best solution
24: Update links to external database
25: Update M F Update Maturity
26: T ← ∅
27: end for

parameters P(Tk ,Ax), I (Tk ), and CR(Ax) are extracted (line
11), and the associated risk level RL in the absence of coun-
termeasures (i.e., CM (Ax) = no action) is calculated (line
12). During the dynamic reaction, it has to be remarked that
timing is one of the most critical factors. Therefore, each
step needs to be executed in a timely fashion. Next, lines
15-22 contain the AIS dynamic methodology to select the
optimal set of countermeasures. Similarly to the AIS static
reaction, an initial set of random solutions CM is generated
(line 15). This set serves as antibodies that will be used to
counteract the antigens (i.e., the ongoing attack). Besides,
also in the dynamic variant, the maturityM (Equation 2) can
be used to refine such an initial generation.

Once the initial generation of random antibodies has
been achieved, the affinity of those antibodies is determined
(line 17). Specifically, as shown in Algorithm 7 for each asset
Ax ∈ Y (Ax) exploited by an ongoing attack Tk , and for each
atomic countermeasure cmh belonging to the solutionsCMj ∈

CM, the benefit B of the countermeasures (Equation 10)
and the RL (Equation 21) are evaluated. In this direction,
if more reaction steps have been selected to be implemented
on the same asset Ax , the combined benefit B(CMj(Ax)) must
be computed as specified in Equation 15. Further, for each

CMj ∈ CM, the corresponding fitness function f (CMj) is
computed, as shown in Equation 23. Besides, the average
affinity of the different antibodies is calculated.

Then, in line 18, the antibodies with the highest affinity
(i.e., set of atomic countermeasures able to minimize the risk)
are cloned. This step is equivalent to Algorithm 3 proposed
for the static version, where K clones {CMj1 , . . . ,CMjK } are
generated proportionally to the fitness function f .
Later, line 19 performs the mutation phase of the clones
{CMj1 , . . . ,CMjK }, as reported in Algorithm 8. Precisely,
each set of atomic countermeasures (i.e., cloned antibody)
experiences a mutation process consisting of adding or
removing an atomic countermeasure or even modifying its
parameters with a certain probability P from a clone CM
generating CM ′. In this direction, the presented mutation
modifies the enforcement parameter of a countermeasure
with a probability P = 0.5, while the addition or removal
are equiprobable with a probability P = 0.25. Consequently,
the affinity of the mutated clones f (CM ′) is computed (i.e.,
the fitness function is measured). If such affinity is greater
than the average affinity of the antibodies in the solution
space avg_affinity(CM) (i.e., the atomic countermeasure of
the clones are not adequate against the attack), then such
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Algorithm 7 Determine_Affinity(T ,A,CM)
1: for all Tk ∈ T do F For each ongoing attack
2: for all assets Ax ∈ Y (Ax) targeted by Tk do F For each involved asset
3: for all CMj ∈ CM do F For each antibody
4: for all cmh ∈ CMj do F For each atomic countermeasure
5: Calculate B(cmh)
6: end for
7: if ∃ CMj(Ax) ⊆ CMj s.t. |CMj(Ax)| > 1 then F If two or more atomic cms enforced on the same asset
8: Calculate combined benefit B(CMj(Ax))
9: end if
10: Evaluate the risk RL(Tk ,Ax ,CMj(Ax)) F Calculate risk of each antibody
11: end for
12: end for
13: end for
14: for all CMj ∈ CM do
15: Evaluate f (CMj) F Compute fitness of each antibody
16: end for
17: avg_affinity(CM)←

∑
CMj∈CM f (CMj)/|CM| F Average affinity of the antibodies

Algorithm 8 Mutate_Clones
(
{CMj1 , . . . ,CMjK }

)
1: for all K clones CM ∈ {CMj1 , . . . ,CMjK } do
2: P← random(0, 1)
3: if P > 0.5 then FWith probability P = 0.5
4: Modify random parameter p in cm within CM to produce CM ′

5: else if P < 0.25 then FWith probability P = 0.25
6: Add random cm to CM to produce CM ′

7: else FWith probability P = 0.25
8: Remove random cm to CM to produce CM ′

9: end if
10: Evaluate f (CM ′) F Determine the affinity of the mutated clone CM ′

11: if f (CM ′) > avg_affinity(CM) then
12: Discard mutated clone CM ′

13: else
14: Replace lowest affinity antibody in CM with CM ′

15: end if
16: end for

clones are removed. Otherwise, they are added to the solu-
tions set CM, replacing the lowest affinity antibodies in CM
at that instant.

Afterward, in line 20, the antibodies with the lowest affin-
ity are removed from the solution space CM. This step of the
dynamic reaction is equivalent to Algorithm 5 described for
the static version.

Finally, the best antibody is chosen as a final solution
(line 21). The loop of lines 16-22 of Algorithm 6 endures
till the stop condition is not met. So, the selection of a
specific stop condition is vital to perform an acceptable
number of iterations. To this extent, and in contrast with
the AIS static methodology, the dynamic process is per-
formed in a reactive fashion (i.e., the assets of the sys-
tem are actively under attack). Thus, it is clear that the
algorithm needs to be executed by prioritizing the timing
factor. Moreover, the acceptable risk level R̃L can also

be used to improve the selection of the optimal set of
countermeasures.

Once the loop in lines 16-22 ends, and consequently,
the best antibody has been found, the atomic countermea-
sures forming the solution go through an updating stage
(lines 23-27). More specifically, like in the static reaction,
the links to the external common security knowledge bases
are updated, as well as the maturity of the atomic security
measures against the eradicated attack. Then, the attack set T
is emptied.

C. EXPLANATORY EXAMPLE
To help the reader further understand the proposed methodol-
ogy, let us illustrate its capabilities and potentialities using an
explanatory example. In particular, a Smart Home scenario
is presented, where an external attacker is actively trying to
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FIGURE 3. Abstract view of the Smart Home scenario proposed for this
example.

jeopardize the interconnected smart devices. Figure 3 depicts
the mentioned scenario, detailing the assets as follows:
• Asset A0A0A0: It is a smartphone connected to a wireless
Access Point (AP) to gain Internet access. Such a device
does not possess any vulnerability in the proposed sce-
nario, that is, V (A0) = ∅.

• AssetA1A1A1: It is a Wireless AP providing Internet connec-
tivity to the smart devices. In this example, this device
exposes two vulnerabilities, so V (A1) = {V23,V43}.

• Asset A2A2A2: It is a Smart TV connected to the AP to
stream multimedia content. This device exhibits two
vulnerabilities, that is, V (A2) = {V9,V37}.

Additionally, in this example, we assume that the external
attacker is executing an attack against the AP to gain access
to the Smart Home network. Specifically, the malicious actor
is exploiting the vulnerability V43 of the wireless AP, which
allows external attackers to take complete control of the
device.6 Then, the next target of the multi-step attack is repre-
sented by the Smart TV that the attacker aims to compromise
through the vulnerability V9. Such a security flaw, in turn,
allows remote attackers to cause aDenial of Service (DoS) via
a crafted web page.7 Thus, the attack path of the malevolent
external entity contemplates the execution of T1 to exploit
V43, and, once this step is accomplished, the implementation
of T2 to misuse V9.
In an effort to dynamically shield the targeted smart

devices, the AIS dynamic reaction is fired when the attack
T1 is reported. Specifically, the set of assets that this reac-
tion aims to protect are Y (A1) = {A0,A1,A2}, but A0 is
excluded since it does not expose vulnerabilities. The param-
eters involved in the calculation of the optimal set of atomic
countermeasures are illustrated in Table 1.
Regarding the wireless AP, it is considered a quite high

critical asset within the network, thus CR(A1) = 0.85.
Consequently, the acceptable risk level is R̃L(A1) = 1.5.

6https://nvd.nist.gov/vuln/detail/CVE-2017-13772
7https://nvd.nist.gov/vuln/detail/CVE-2019-11889

In addition, the impact of the exploited vulnerability is
I (T1) = 8.8, which is the base value calculated by the
CVE. Then, we assume that the probability of exploiting such
vulnerability is high, i.e., P(T1,A1) = 0.95, which can be
seen as the confidence that the security devices reporting
the detection (e.g., IDS) has. So, the measured risk level in
this situation is RL(T1,A1) = 0.95 × 8.8 × 0.85 = 7.1.
To counteract the ongoing attack, several dynamic counter-
measures are listed in Table 1, together with their residual
values. Recall that such values become real when the atomic
countermeasures are actually enforced.
Regarding the Smart TV, its criticality value is CR(A2) =

0.7, generating an acceptable risk level R̃L(A2) = 3. More-
over, the impact that the violation of the exposed vulnerability
may cause is I (T2) = 7.5, which, also in this case, is the base
value computed by the CVE. Additionally, the probability
of exploiting such vulnerability is P(T2,A2) = 0.7, which
we assume is the value that the attack model has reported
for this scenario. Consequently, the risk level for this asset
is RL(T2,A2) = 3.67. To block the possible steps of the
attackers, the countermeasures in Table 1 are proposed, and,
similarly to the previous case, their values are residual.
Yet, some considerations should be made to contextual-

ize the example thoroughly. First, it is worth mentioning
that the presented countermeasures are just a few potential
remediations that can be enforced on the threatened assets
to eradicate the attack. Furthermore, it has to be noted that
it is not realistic to expect the certain presence of a SIEM
solution in this scenario. However, some lightweight alter-
natives can be implemented to preserve the security level
of the smart devices, which are becoming more important
every day and critical within the scenario in which they are
deployed [2]. Also, the number of possible combinations of
atomic countermeasures to be enforced is relatively high,
even in such a small example. In fact, considering only the
possible activations of a countermeasure (without weighing
the parametric countermeasures), the number of possible
solutions for 11 countermeasures is 211 = 2048.
The steps of the AIS dynamic reaction for this tiny example

are illustrated in Figure 4. First, an initial set of random anti-
bodies is generated. In particular, three antibodies are initially
created, i.e., CM = {CM1,CM2,CM3}, selecting random
atomic countermeasures for their composition, i.e., CM1 =

{cm2, cm7}, CM1 = {cm5, cm6}, and CM3 = {cm1, cm8}.
Later, the affinity of the generated antibodies must be cal-
culated, as indicated in Algorithm 7. At this point, those
atomic security measures assume their real value against
the ongoing threat, which are reported in Table 2. From
those values, it is possible to calculate the benefit B(cmi)
(Equation 10). Since no multiple countermeasures have been
selected to be executed on the same asset, no combined effect
B({cmi, cmj, . . . }) needs to be calculated in this case. Then,
the risk level RL(Tk ,Ax , cmi) is calculated again considering
the benefit provided by implementing the selected atomic
countermeasures. Additionally, the fitness of each antibody
is calculated (Equation 23), and, subsequently, their average
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TABLE 1. AIS dynamic example settings for the Smart Home scenario.

TABLE 2. AIS dynamic countermeasures for the Smart Home scenario.

affinity avg_affinity(CM) = (0.985 + 1.37 + 1.53)/3 =
1.348.

Therefore, the antibodies must pass through the cloning
and mutation phases. For the sake of simplicity, this example
is run selecting K = 1. Thus, the best antibody CM1 is
cloned. To this extent, we assume that the probabilistic muta-
tion phase in Algorithm 8 selects to modify the enforcement
parameter of cm2 ∈ CM1 generating CM ′1. Specifically, such
modification, say, increases the number of seconds during
which the AP port is blocked to stop the external attacker.
In this case, the fitness value of the mutated antibody CM ′1
is f (CM ′1) = 0.98, slightly improving f (CM1), since the
benefit of the mutated countermeasure is cm′2 = 4.79. Given
that the affinity of CM ′1 is lower than the average affinity
avg_affinity(CM), the mutated antibody becomes part of the

solution space CM replacing CM3 (i.e., the worst affinity
antibody at this step). Finally, the worst antibody within
the solution space CM2 is removed, and a new randomly
generated one replaces it, say, CM4, to start a new iteration
of the AIS methodology.

V. EXPERIMENTS
Several thoughtful experiments have been conducted to
demonstrate the capabilities and feasibility of the proposed
methodology. Specifically, the tests have been executed on a
Toshiba Portege Z30-C laptop equipped with an Intel Core
i7-6500U CPU and 16 GB of DDR4 memory.
For ease of readability, the settings of the experiments are

reported in Section V-A, a thorough analysis of the obtained
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FIGURE 4. Example: AIS dynamic reaction steps for the presented example.

TABLE 3. Description and values for each input parameter used in the experiments.

results is detailed in Section V-B, while a discussion on the
limitation of the approach are presented in Section V-C.

A. SETTINGS
The AIS-powered reaction methodology has been imple-
mented from scratch as a group of interconnected Python
scripts. During the experimental sessions, the scripts were
running on separate CPUs in order to avoid conflicts as a
consequence of possible context switches.

Due to the inherent characteristics of the methodology
(as detailed in Section III), several parameters need to be
considered and tuned to achieve an optimal configuration
and, subsequently, react against potential threats effectively.

In particular, Table 3 resumes the input parameters to be set,
together with the values used. To this extent, it has to be noted
that several values (i.e., P(τk ,Ax), I (τk ), CR(Ax), Eff (cmi),
Imp(cmi), and Cost(cmi)) are generated randomly to better
argue on the capabilities of the presented methodology by
introducing randomness.

Additionally, the random generation of the parameters of
the threat (i.e., P(τk ,Ax) and I (τk )) allows us to generalize the
reaction efficiency of the AIS-powered methodology since
the experiments do not focus on specific attacks or suspi-
cious activities. In this sense, the AIS-powered methodology
is agnostic to the specific threat, as long as it is correctly
detected and reported to the SIEM. From those reports,
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TABLE 4. Description of the output parameters measured during the experiments.

the SIEM is in charge of extracting the relevant parameters
that will fire the reaction.

Additionally, some of the input parameters related to the
system under protection are chosen within an assigned range,
for instance, NA, |τ | ∈ [20, 100], |CM | ∈ [100, 1,000]. This
choice relies on the fact that we believe that such configu-
rations represent realistic environments of modern systems
without loss of generality. Besides, the output parameters
measured during the experiments are illustrated in Table 4.
Particularly, it is worth remarking that the possible fitness
values are included in [0, 10], where 0 indicates the optimal
solution, and 10 refers to the worst one.

Before executing the actual experimental sessions, various
tests have been executed, aiming at acquiring an initial knowl-
edge on the sensitivity of the parameters and how they affect
the overall performance of the algorithm. The results of such
tests are reported in Figure 5. Those tests have been carried
out by defining a fixed number of assets (i.e., NA = 20)
and threats (i.e., τ = 20) to simulate a network in which
20 compromised assets are operating, which represents a
small systemwithout loss of generality. In particular, for each
row of Figure 5, two parameters are fixed, and the third one
is changed to discuss its impact on the fitness and execution
time. It has to be stressed out that each experiment has been
repeated 100 times to avoid potential outliers due to the
randomness of the considered entities. Additionally, the first
Y-axis (i.e., concerning the fitness) has been limited to the
[0, 1] interval, whereas the secondary Y-axis (i.e., relative to
the execution time) has been plotted on a logarithmic scale.

Going into detail, the first row (Figure 5a-5b-5c) measures
the impact of an increasing number of antibodies within the
solution space, fixing Iter = 1,000 and |CM | = 100.
Concretely, it is possible to observe that an increasing count
of antibodies improves the fitness slightly while deteriorating
the execution time since the algorithm needs to manage a
wider population.

Next, the second row (Figure 5d-5e-5f) illustrates the con-
sequence of a growing quantity of countermeasures with
Iter = 100 and |CM| = 20. Particularly, the fitness value
ameliorates slightly, whereas the execution time worsens as
the methodology has to calculate more benefit values.

Then, the third row (Figure 5g-5h-5i) depicts the effect of a
larger number of iterations setting |CM | = 400 and |CM| =
10. Specifically, the fitness enhances more significantly in
this case, but the algorithm runs for a longer time.

Finally, the fourth and last row is composed of a unique
graph (i.e., Figure 5j), in which the inspected parameters
are boosted to the maximum value of the current experiment

simultaneously, i.e., Iter = 1,000, |CM | = 1,000, |CM| = 30.
As expected, the fitness value reaches its lowest (thus best)
value, but the AIS-reaction execution becomes relatively
slow.

All in all, this experimental phase allows one to conclude
that a higher number of iterations or antibodies harms the tim-
ing performance of the methodology, which overall operates
satisfactorily given the reduction of the fitness value in each
test. On the contrary, an increasing number of countermea-
sures slightly degrades the execution time of the algorithm,
as expected.

B. ANALYSIS OF RESULTS
This section offers an in-depth analysis and discussion on
the outcomes of the several experiments conducted on the
proposed AIS-powered methodology. Note that each of the
presented experiments has been repeated 100 times to avoid
the effects of potential outliers due to the randomness of the
used parameters, as reported in Table 3.

1) ON THE PERFORMANCE OF THE AIS-POWERED
REACTION
First, the fitness values and execution time have been mea-
sured while increasing the number of iterations, as illustrated
in Figure 6. For this test, NA = 20 and τ = 20 are randomly
generated, simulating the existence of 20 compromised assets
within the protected system. In addition, the number of coun-
termeasures and antibodies is fixed, i.e., |CM | = 1,000 and
|CM|=20. Explicitly, at each iteration, the output parameters
are measured and, afterward, the arithmetic medians over
100 repetitions are plotted (i.e., the dashed blue line for the
fitness and the dashed-dotted green line for the execution
time, respectively) together with the corresponding standard
deviations (the red vertical line and the black one, respec-
tively). Thus, the plot in Figure 6 portrays two trends of a
thousand points along with the relative standard deviations.

Regarding the fitness curve, it starts from an initial
value representing the system without any countermeasure
enforced. Next, the AIS algorithm initiates, computing the
solution that aims at minimizing the fitness. While the iter-
ations number increases, the fitness of the best solution
enhances, stabilizing its value after 200 iterations approxi-
mately. The improvement is then quite contracted down to
the end of the experiment, ending in f ≈ 0.3. To this
extent, it should be pointed out that, since the values of the
countermeasures, assets, and threats parameters are generated
randomly, it is very improbable that a solution exists (i.e.,
a combination of atomic countermeasures) minimizing the
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FIGURE 5. Fitness and execution time values for the initial experiments.

fitness till extremely small values unless the experiments are
executed for a huge number of times.

Concerning the execution time trend, it increases almost
linearly with the number of executions until 60 seconds on
average for Iter = 1,000, expanding the standard deviation
values when the iterations number gets bigger. Considering
that the fitness stabilizes around 200-400 iterations, the algo-
rithm requires between 10 and 20 seconds to calculate the best
solution, which can be assumed acceptable in the proposed
scenario.

Moreover, the output parameters have been determined
while increasing the number of countermeasures from

100 to 1,000 with increments of 100, as shown in Figure 7.
Also for this test, NA = 20 and τ = 20 are randomly gen-
erated. Besides, the number of iterations and antibodies are
set, i.e., Iter=200, |CM|=20. Specifically, the arithmetical
medians and standard deviations over 100 runs of the best
solution fitness and execution time are charted for each run of
the experiments. Successively, the medians of the curves are
connected using the same shapes and colors of the previous
experiment.

About the fitness values, a higher number of atomic
countermeasure does not provide a substantial improvement.
That is, the fitness slightly improves as the countermeasures
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FIGURE 6. Fitness and execution time while increasing Iter , |CM|=1,000, |CM|=20.

augment, as already proved during the initial experimental
phase. Nevertheless, the best solution offers a remarkable
fitness value, i.e., f ≈ 0.3− 0.35.
Instead, the execution time presents a less-than-linear

increasing trend, since the algorithm concludes its execution
between 4.5 (in the case of |CM | = 100) and 10.5 seconds
(for |CM | = 1,000) on average. Therefore, the number of
countermeasures does not imply a significant negative impact
on the execution time of the AIS reaction methodology.

Furthermore, the fitness value and execution time have
been evaluated while increasing the number of antibodies
from 10 to 40 with increments of 5, as depicted in Figure 8.
Also for this experiment, NA = 20 and τ = 20 are randomly
generated. In addition, the number of countermeasures and
iterations are fixed, i.e., |CM | = 400, Iter = 200. In partic-
ular, the arithmetical medians and standard deviations over
100 runs of the best solution fitness and execution time
are drawn for each run, and, afterward, the medians of the
curves are connected using the same shapes and colors of the
previous experiments.

With regard to the fitness curve, the number of antibod-
ies (i.e., possible solutions) does not produce a consider-
able enhancement. Explicitly, the fitness of the best solution
slightly ameliorates as the population size grows, as already
argued during the initial experiments. However, the computed
fitness for the best individual is quite adequate, i.e., f ≈
0.25 − 0.35. Recall that a wider population size implies a

bigger number of clones directly since the latter is calculated
based on the former.

Concerning the execution time, the trend is almost linear
with the number of antibodies. That is, the algorithm ter-
minates its execution between 3.5 (for |CM| = 10) and
12.2 seconds (considering |CM| = 40) on average.

In order to argue on the scalability of the proposed method-
ology, an experiment has been executed to measure the output
parameters with an increasing number of compromised assets
from 10 to 100 with increments of 10, as exposed in Figure 9.
Similarly, the total number of atomic countermeasures is
augmented, i.e., |CM | = 10 × NA. Also, the iterations and
antibodies are set, i.e., Iter = 200, |CM| = 20. Also in this
case, the arithmetical medians and standard deviations over
100 runs of the best solution fitness and execution time are
plotted for each run, and, later, the medians of the curves are
connected using the same shapes and colors of the previous
experiments.

Specifically, the fitness is not negatively impacted by the
number of compromised assets. In fact, its median value is
close to 0.3 on average for 10 assets and increases till reaching
0.5 for 100 assets. One could easily say that such a rise ismore
than acceptable considering the magnitude of the considered
scenario.

The execution time, instead, presents an almost-linear ten-
dency compared to the number of assets. Nonetheless, very
few will oppose that a methodology that is able to provide
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FIGURE 7. Fitness and execution time while increasing |CM|, Iter =200, |CM|=20.

countermeasures for 100 assets in 60 seconds represents an
outstanding result.

2) ON THE IMPORTANCE OF THE STOP CONDITION
As previously mentioned in Section IV, an accurate choice of
the stop condition is essential for each proposedmethodology
of reaction frameworks. Particularly, an erroneous assign-
ment of this parameter could expose the protected system to
dangerous situations or in an over-utilization of the system
resources. Generally, the stop condition can be categorized
as reported in the following list:

• Time-based stop condition: The algorithm terminates
after a certain predefined lapse of time.

• Iteration-based stop condition: The algorithm con-
cludes when a finite number of iterations is achieved.

• Quality-based stop condition: The algorithm stops
when the quality of the solution reaches a predefined
threshold.

• Risk-based stop condition: The algorithm ends if the
risk has been minimized to a fixed value.

• Context-based stop condition: The algorithm com-
pletes when a parameter or entity moves to a specific
state.

It has to be stated that it is also possible to combine the cat-
egories above in order to build a fine-grained stop condition
that better fits the particular needs of a certain algorithm.

Particularly in our research, a context-aware stop condition
has been developed and tested to argue on its capabilities
within the proposed AIS-reaction methodology. Concretely,
such a stop condition is calculated on-the-fly based on the
fitness valuewitnessed in the system. That is, the observed fit-
ness serves as a security index to determine themost appropri-
ate stop condition at each execution. In this sense, we assume
that the higher (worse) the fitness value is measured, the faster
the reaction needs to be enforced on the assets. The main
reasoning behind this choice lies in the fact that, when the
fitness reaches high values (i.e., close to 10), the assets of
the protected system are exposed to an extremely high risk
demanding a fast response. On the contrary, if the fitness
remains at low rates (i.e., around 0), the reaction may be
more time-consuming in search of the optimal combination
of countermeasures.

As seen in the former experiments, the selection of input
parameters directly impacts the performance of the algorithm,
in particular, both on the fitness and execution time. Thus,
starting from calculating the initial fitness (when no coun-
termeasures have been enforced), the methodology assigns
specific values to the input parameters. Explicitly, for each
analyzed parameter, min-max intervals have been determined
based on the outcomes of the experiments:

Iter ∈ [100, 975]
|CM | ∈ [100, 1,100]
|CM| ∈ [10, 35] (24)
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FIGURE 8. Fitness and execution time while increasing |CM|, |CM|=400, Iter =200.

Thus, the number of iterations of the algorithm encom-
passes a range where 100 represents the minimum quantity
and 975 the maximum one. Therefore, when the fitness value
is computed, the exact number to be assigned to the input
parameters Pi ∈ {Iter, |CM |, |CM|} is calculated as follows:

Pi = mini + (maxi − mini)× (1− f /10) (25)

As a matter of example, suppose that the fitness value
measured in a specific state of the protected system is equal
to 8. Subsequently, the number of iteration with which the
algorithm is executed is set to Iter = 100 + (975 − 100) ×
(1−8/10)=275. Similarly, the same reasoning applies to the
other input parameters (|CM |=100+ (1, 100− 100)× (1−
8/10)=300 and |CM|=10+ (35− 10)× (1− 8/10)=15).

The results of the experiment employing the context-aware
stop condition are shown in Figure 10. In the chart, the Y-axis
represents the measured value of fitness during the execution
of the algorithm,whereas theX-axis shows the execution time
(in seconds) on a logarithmic scale. Specifically, each line
of Figure 10 depicts a different situation in which, based on
the witnessed initial fitness value, the other parameters are
consequently set before the algorithm initiates. Note that the
experiment has been executed 100 times, and the plot depicts
the arithmetic medians and standard deviations computed
over the runs.

Going into detail, it is possible to appreciate that the pro-
posed stop condition performs as expected for the algorithm.

In particular, the first curve starts from a fitness value equal
to 10 (meaning the worst possible risk situation). Therefore,
the other parameters are assigned based on Equation 25:
Iter = 100, |CM | = 100, and |CM| = 10, respectively.
In accordance with such parameters, the algorithm runs for
1 second approximately, minimizing the fitness to 1.7 on
average by selecting the combination of atomic countermea-
sure in a reduced time window. On the contrary, the other
curves portrayed in the plot begin from lower fitness values
(i.e., f = 8, f = 6, f = 4, and f = 2), being able
to set the input parameters to higher values. Consequently,
the algorithm can execute over longer runs, minimizing the
fitness till values close to 0 in the best case. That is, when
the fitness is equal to 2, the methodology runs for about
100 seconds and, during this time, it is able to reduce the
fitness to approximately 0.2 on average.

C. DISCUSSION
Throughout the previous Sections, the AIS-powered reaction
has been proposed, featuring the crucial characteristic of the
AIS methodology and leveraging both the standard coun-
termeasures representation and the countermeasure benefit.
In this direction, the AIS-powered reaction has been proved
robust and efficient, being able to compute the optimal set
of countermeasures to enforce on the assets in a more than
acceptable time while facing several random threat scenarios.
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FIGURE 9. Fitness and execution time increasing NA, |CM|=10× NA, Iter =200, |CM|=20.

Nevertheless, some challenges still remain partially solved or
even unsolved.

Firstly, the proposed reaction assumes that correct detec-
tion and reporting phases are accurately performed within
the protected system. That is, vulnerability scanners (for
the static response) and IDSs (for the dynamic version)
are in charge of discovering possible suspicious activities
and report those in a timely fashion. From such reports,
the SIEM extracts relevant parameters about the threat and,
consequently, fires the AIS-powered reaction. However, it is
licit to assume that those hypotheses may result incorrect
in certain circumstances, e.g., the exploitation of a zero-day
vulnerability. In this scenario, further investigation is needed
to provide the detection entities with powerful attack models
that contemplate the potential appearance of such previously
unknown activity.

Then, the performance of the AIS-powered reaction has
been tested using random inputs, repeating the experiments
several times to prove its capabilities. One could say that
the outcomes were satisfactory even for a quite dense net-
work, say, with a hundred assets and a thousand countermea-
sures. Nonetheless, the proposed reaction should be tested
in a more realistic environment (e.g., a controlled virtual
network) to further discuss potential advantages and pos-
sible limitations. Such a research path represents a fasci-
nating future research direction on which we are currently
working.

Besides, the input parameters for the experiments have
been chosen undertaking reasonable assumptions, for exam-
ple, considering the size of the protected network or a fair
number of countermeasures for each asset. To this extent,
the application of an optimization algorithm would be bene-
ficial to pinpoint correct values for those parameters, improv-
ing both the security and timing performance of the AIS
methodology ultimately.

Another critical challenge regarding the reaction field is
the population of the countermeasure knowledge. One could
quickly notice that the effort required to study, analyze, and
acquire such knowledge about the remediations is not trivial.
This limitation is principally due to the often ambiguous def-
inition of countermeasure within the literature. In this sense,
we believe that the proposal of a reaction methodology that
actively uses a standard representation of countermeasures
objects constitutes a fundamental step toward the acquisition
of reaction knowledge and its sharing among different secu-
rity teams.

Last but not least, a crucial point worth discussing is
the role of the security administrators. Indeed, they play a
primary function in the battle against cyberattacks, balanc-
ing the trade-off between the effectiveness and the cost of
the reaction. In our vision, each phase of the cybersecurity
cycle should not overlook security administrators’ feedback,
avoiding overwhelming them at any time. For this reason, our
proposal of semi-automatic reaction envisions the security
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FIGURE 10. Context-aware stop condition trend.

administrators as a central element since they are in charge
of selecting the most appropriate countermeasures among
the ones computed by the AIS-powered reaction and, conse-
quently, update the maturity of such a bunch of remediations.

VI. CONCLUSION AND FUTURE WORK
It is without a doubt that the recent convergence of ICT
technologies around the Internet presents several outstanding
advantages but also poses major challenges from a secu-
rity perspective. Indeed, those infrastructures are suffering a
considerable number of cyberattacks that become every day
more sophisticated and disruptive, causing huge economic
losses. In this endless battle between security teams and
malevolent entities, reaction strategies are essential to coun-
teract potential devastating threats. In particular, the optimal
set of countermeasures must be cherry-picked to balance
the trade-off between the effectiveness of the reaction in
eradicating the threat and its possible negative impact on
the system properties. Additionally, the selection needs to
be adaptable to the identified threat, witnessing the risk at
any time.

In this paper, an AIS-powered methodology to select the
optimal set of atomic countermeasures is proposed. Specif-
ically, an adaptation of such a bio-inspired technique is
presented, modeling the various entities participating in the
reaction battlefield to translate them into the immunological
knowledge sphere. That is, the detected threats represent

the antigens, while the countermeasures serve as the anti-
bodies. Moreover, an index to evaluate the convenience of
enforcing a specific atomic countermeasure quantitatively is
proposed, i.e., the countermeasure benefit. This index is then
extended to embrace the enforcement of multiple counter-
measures on a certain asset, adopting a defensive perspective.
The AIS-powered reaction is then presented, detailing with
fine-granularity the steps needed to achieve the optimal coun-
termeasures selection and distinguishing between static and
dynamic AIS-reactions. To this extent, the studied reactions
do not aim to reduce the risk blindly but to minimize the
difference between the measured risk in a specific state of
the system and the acceptable risk (i.e., the fitness func-
tion). To prove the capabilities of the proposed AIS reaction
methodology, several experiments are conducted demonstrat-
ing that it is able to effectively minimize the fitness function
in a more than acceptable time frame even under stressed
conditions.

Future works will study the possibility of employing the
proposed methodology in a real use-case scenario, studying
the viability of developing the AIS-powered reaction with
real network traffic in a SIEM. Besides, a meta-optimization
algorithm to further enhance the selection of AIS-reaction
input parameters is worth investigation. Furthermore, we will
analyze the feasibility of enriching the AIS reaction with
offensive countermeasures, which are considered of great
interest in military scenarios.
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