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Abstract—The telecommunication industry is making a major
shift towards cloud native Network Functions Virtualization.
However, being cloud native implies more than just replacing
Virtual Machines with containers. The cloud native approach
changes the way virtual network functions are being composed,
deployed, and configured as network services and how these ser-
vices are being orchestrated and managed at run time. Traditional
Network Management and Orchestration (MANO) frameworks
are implemented via specialized engines that have been conceived
prior to the cloud native era. Thus, they inherit many traits, which
impede pivoting to cloud native. In this paper we focus on some
fundamental challenges and propose a novel cloud native MANO
architecture that exploits advantages of Kubernetes (K8s) a de
facto industry standard for container orchestration.

Index Terms—NFV, MANO, Kubernetes, cloud native

I. INTRODUCTION

Paraphrasing the Cloud-Native Computing Foundation
(CNCF) definition [1], cloud native computing is a set of
technologies that help developing and operating scalable and
portable applications as containerized micro-services that are
dynamically managed and orchestrated by a platform to uti-
lize the advantages of the cloud computing model. Spurred
by advancement of 5G, the telecommunication industry is
going through a cloud native transformation [2]. However,
applying the cloud native approach to the telecommunication
workloads is challenging and the industry has to go a long
way before the potential of cloud native is fully realized for
the telecommunication workloads. The challenges stem from
the fact that, on the one hand, many of these workloads
are legacy ones and even when containerized do not readily
render themselves to the cloud native methodology. On the
other hand, leading cloud native platforms, such as K8s lack
certain features that are required for executing and managing
telecommunication workloads and these gaps should be filled
before platforms like K8s become the platforms of choice for
the telco industry. Discussing all aspects of applying the cloud
native methodology to telecommunication is beyond the scope
of this paper. Rather, we focus on four essential aspects of the
problem that have received less attention so far.

First, traditional network services orchestration frameworks
predate the cloud native era [3]. While recently major MANO
frameworks claim that they have become cloud native, in
reality this amounts to containerizing the MANO engines and
executing them on top of container orchestrators, such as K8s.
The workflow orientation, centralization of the management
logic, and limited support for highly dynamic workloads still
permeate the MANO frameworks. To address these issues, [3]

proposed making K8s itself a MANO framework. Rather than
deploying K8s as ”dumb” Network Functions Virtualization
Infrastructure (NFVI), it is utilized at the levels of Virtual
Network Function Manager (VNFM) and Network Function
Virtualization Orchestrator (NFVO). Yet, to the best of our
knowledge, no in-depth study of making K8s itself a cloud
native MANO framework suitable to manage telecommunica-
tion workloads has been presented so far. This is a broad topic
and we consider this work to be a first necessary step in this
direction.
While MANO is a generic concept that can be implemented
in a multitude of ways, the workflow oriented frameworks,
such as OSM [4] or ONAP [5], are divorced from the cloud
native paradigm that is being used by the workloads that they
need to manage. The workflow orientation holds true even for
experimental MANO implementations that rely on K8s native
workflow operators, such as Argo [6], as was reported in [7–
9]. In [3], K8s itself has been proposed as a potential next
generation cloud native MANO. However, we argue that, as
part of switching to K8s as a basis for MANO, the traditional
workflow oriented mindset of MANO needs to be transformed
to K8s native controller-based orchestration approach [10] to
exploit best practices of K8s, such as Operators [11].
Second, cloud-native prompts for decomposition of traditional
VM-based Virtual Network Functions (VNF) into smaller con-
tainer based micro-services with well defined functionality that
can be developed, scaled, moved, managed and orchestrated
in a much more flexible way than legacy VNFs. Furthermore,
this decomposition opens up opportunities for more Network
Equipment Providers (NEP) to enter the market which promotes
much needed innovation and competition in a traditionally
vertically integrated industry. However, these new opportuni-
ties also bring about a problem of how to compose these
diverse Cloud Native (or Container) Network Functions (CNFs)
into larger services in a methodological way suitable to the
telecommunication requirements. In particular, a traditional
telecommunication taxonomy differentiates between Virtual
Deployment Units (VDU), Virtual Network Function Com-
ponents (VNFC) that might comprise several VDUs, Virtual
Network Functions (VNF) that might be constructed of a few
VNFCs, VNF Packages, and Network Services that are built of
VNF packages [12]. In [13], these concepts are mapped to K8s
pods (VDU), Replica Set and Deployments (VNFC), Services
(VNFs), and Helm charts (VNF packages). However, there is
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no natural concept for Network Service in K8s. We refer to
this as a composition problem1.

Third, network services comprising multiple CNFs might
have complex inter-dependencies between them. These inter-
dependencies often lead to the need of propagating dynam-
ically bound properties from one CNF to another2. In the
telecommunication domain, there exist multiple examples when
dynamic dependency management cannot be achieved via stan-
dard methods like those of K8s that require every micro-service
to be accessible via predefined known ports and via predefined
local URLs. As an example consider non-HTTP protocols such
as Session Initiation Protocol (SIP) being part of a typical
telecommunication workload, such as VoIP. We refer to this
issue as a dynamic dependency management problem.

Fourth, it is required that MANO would support multiple
NFVIs. We argue that K8s is well suited for multi-NFVI
scenarios because of being extensible via the mechanism of
Custom Resource Definitions (CRD), which allows to present
non-K8s resources to K8s based controllers and therefore make
them part of K8s ecosystem. We propose to use the K8s
Operator pattern to develop Virtual Infrastructure Managers
(VIM) for non-K8s NFVI3.

Our specific contributions are as follows.
• We propose K8s and its ecosystem as a cloud native

alternative to the existing MANO orchestration frame-
works. We claim that this is a more elegant, portable, and
streamlined compared to deploying separate orchestration
engines on top of K8s;

• We address four aspects related to this proposition and,
broader, to the cloud native shift in the telecommunication
industry: K8s native orchestration, composition, dynamic
dependencies management, and multi-NFVI management;

• We offer an open source prototypical implementation
that we deem useful for the community for experimen-
tation and research of applying cloud native principles to
telecommunication workloads.

The rest of this paper is organized as follows. In Section II
we highlight the background and related work. In Section III we
formulate the problems in greater detail. This is followed by
proposing a solution in Section IV that details our proposed
architecture and walks the reader through our open source
implementation available in [14, 15]. We provide illustrative
examples to accrue intuition and understanding of the issues
involved and why they are not trivial to address. Section V
offers concluding remarks and outlines future directions.

II. BACKGROUND AND RELATED WORK

[16] provides introduction into Network Function Virtualiza-
tion (NFV) and explains its benefits, enablers and challenges.

1The composition problem transcends Network Services composition, but in
this paper, we only consider aspects related to telecommunication workloads.

2The inter-dependencies that we discuss here are runtime dependencies
among distributed components that should not be confused with build/linkage/-
dynamic loading dependencies declaration w.r.t. libraries and software packages
within a single software component

3Note that while K8s removes the need for VIM for containerized workloads,
VIM is still useful when it comes to managing non-K8s resources.

ETSI MANO [17] is a standard for NFV Orchestration and
Management (NFV MANO). [18] describes the challenges
involved in NFV MANO. OSM [4] and ONAP [5] are popular
NFV MANO frameworks.

[3] proposed using K8s [19] as VNF orchestrator, however
the authors did not expand on the issues involved in using K8s
as NFV MANO framework.

Since the focus of K8s originally was on enabling orches-
trating container-based applications, its core lacks support for
composition of these applications. The core K8s provides nei-
ther first-class-citizen support for declaring which application
K8s constructs (pods, configmaps, etc.) belong to, nor supports
using the applications as building blocks in composition of
other, higher-level applications.

To address grouping of basic K8s constructs into higher level
applications, K8s Application CRD and controller [20] were
introduced. However, this construct does not provide means to
compose the applications into higher-level applications. It also
does not provide means to dynamically manage dependencies
between the applications.

In K8s ecosystem, composing K8s constructs into higher
level applications can be achieved by Helm [21], a popular
package managing tool for K8s. Helm has a concept of charts
and sub-charts. A chart represents a packaged application that
can be deployed to K8s. Using Helm sub-charts feature, appli-
cations represented by charts can be composed into complex
applications. However, composition of applications by Helm
lacks dynamic dependency management. Helm handles only
static (deployment-time dependencies) dependencies between
K8s components, using text templating.

Another framework that handles composition and depen-
dency management on K8s is Crossplane [22]. Crossplane
allows creating applications that claim various composite in-
frastructure resources while handling dependency management
between the resources and the applications. The focus of
Crossplane, however is on infrastructure management for ap-
plications. A limitation of Crossplane is that the composite
resources are cluster-scoped.

Yet another framework that handles composition and de-
pendency management, not only for K8s but also for other
infrastructures, is Juju [23]. However, Juju is not K8s-native
and does not apply the Operator pattern of K8s.

III. CHALLENGES

In this section we describe the problems of dynamic depen-
dencies management and composition in greater details. We
consider a Network Service (NS) that is composed of multiple
CNFs. The CNFs have a set of inter-dependencies between
them. We consider the case where CNF1 depends on a set of
properties of CNF2. While the set of dependent properties is
known to the NS developer, the actual values of these properties
are not known until CNF2 is started. Dynamic Dependency
Management addresses the problem of automatically resolving
such dependencies at run time. The NS developer should
only have to define the dependencies. The orchestrator is then
responsible for resolving these dependencies by addressing



Fig. 1: Property Propagation Comparison

two aspects: control over the start-up sequence of the CNFs,
and dynamically propagating the set of dependent properties.
Control over the start-up sequence means that CNF1 should
wait until CNF2 is started and the values of the dependent
properties are known. Note that this does not mean that the
two components cannot be started at the same time, only that
CNF1 should wait until the values of all dependent properties
of CNF2 are propagated to it. Dynamic property propagation
means that once the value of a dependent property is set in
CNF2 it should be propagated and become available to CNF1.

Fig. 1 presents a comparison between workflow based or-
chestration and a cloud native orchestration with dynamic
property propagation. It should be noted that in the cloud
native case a controller continues to constantly watch the
dependencies even after both CNFs have been started. Upon
any change the controller will propagate the properties to the
components that depend on them.

The problem of composition is how to enable NS developers
to reuse repeating building blocks when composing a NS.
Typically a NS comprises multiple VNFs (or CNFs) and each
VNF comprises multiple VNF Components (VNFC). In many
cases there is a subset of VNFs or VNFCs that creates a
repeated pattern. Such patterns can be reused as building
blocks to make the design of NSs and VNFs easier. The
developer should be able to create a composition of multiple
basic building blocks (e.g., VNFCs) and then extend this with
compositions that also includes other compositions. Once such
compositions are created the orchestrator should be able to
orchestrate them as a single unit, e.g., scale a composition
in/out or perform health checks and healing operations at a
composition level. Using such compositions greatly simplifies
NS development and ensures more efficient and consistent
lifecycle management. K8s, however, does not support such
reusable composition and only supports orchestration at the
level of resources (K8s native or CRs).

Another challenge deals with supporting multi-NFVI sce-
narios. MANO achieves support for multi-NFVI use cases by
introducing VIMs that serve as adaptors between the standard
APIs (e.g., as defined by ETSI) and the platform ones of
different NFVIs. In our proposition, all cloud native resources
are managed directly, so no adaptor is required. However,
for non-K8s NFVIs either a K8s managed VIM should be
provided or delegation to existing MANO frameworks should
be exploited or some combination thereof. Due to the lack of
space we only briefly discuss one possible implementation that
follows the first approach.

Fig. 2: Architecture Overview

IV. PROPOSED SOLUTION

In this section we present a prototypical implementation of
a K8s native NFV MANO. We first describe the architecture
along with elaboration on some implementation details. Next
we present an example of a Network Service that is designed
and managed using the concepts and tools we described earlier.

A. Architecture and Implementation

Fig. 2 presents a high level view of the architecture. Our
cloud-native NFV MANO extends the K8s style of performing
operations on applications to orchestrating CNFs using the
operator pattern [11] according to a control-loop [10].

Following the operator pattern, CNFs are managed by K8s
operators [11], ideally provided by CNF vendors on an operator
marketplace like [24]. The operators provide a definition of a
K8s Custom Resource (CR), an instance of Custom Resource
Definition (CRD), that represents the desired and the actual
state of the CNF. The operator watches the CR and tries
to reconcile the desired state with the actual state. The NS
lifecycle is also managed by an operator, with a CR that
represents the components of the NS and the dependencies
between them. Therefore, orchestrating a NS means running
multiple operators (one per CNF and one for NSs), working
continuously in control loops and updating CRs of one another.

Our proposed K8s native NFV MANO is designed in a
cloud native fashion as a hierarchy of K8s operators, with an
additional SDK that facilitates development of NSs along with
their orchestrating operators.

The NS developer creates a NS descriptor which is repre-
sented as a CRD. In addition, the NS includes a set of VNFM
operators, one per VNF or CNF that the NS comprises. The set
of NS operators and CRDs is then deployed by an Admin to a
K8s cluster. To simplify and standardize NS development we
implemented a NS operator that is acting as a generic Network
Function Virtualization Orchestrator (G-NFVO). When a NS
CR is created from the CRD representing the NS descriptor,
the G-NFVO processes it and instantiates the NS. During NS
instantiation the CRs for the VNFM operators are created and
these operators instantiate the CNFs included in the NS. All
other NFV MANO lifecycle operations (e.g., scale or update)
are performed in the same K8s native fashion by modifying
the NS CR. The G-NFVO operator watches all NS CRs and
executes any operations that are required to bring the NS’s



NFV MANO Function Implementation in K8s + Operators

Onboarding Operator Lifecycle Manager
Instantiate kubectl create

Scale kubectl scale + horizontal pod autoscaling
Update configuration kubectl apply/edit

Upgrade kubectl apply/edit + rolling update
Fault management reconciliation by the operators + liveness probes

Terminate kubectl delete + owner references + finalizers

TABLE I: Implementation of MANO operations by K8s and
Operators

current state to the desired state specified in the NS CR. In
Table-I we describe how MANO operations are implemented
using K8s operators and CRs.

In addition to NS lifecycle management, the G-NFVO op-
erator implements dynamic property propagation to manage
dynamic dependencies. The NS CR contains the list of com-
ponents and includes mapping of properties between different
components. Each component represents a CNF CR and has
its own specification. The NS CR also contains a list of
properties in the NS level that can be propagated to and from
the components that the NS consists of. As every K8s operator,
G-NFVO operator works in continuous periodic reconciliation
cycles. In each cycle the whole state of the NS is reconciled
to address any changes in any dependent resource. As part
of this reconciliation cycle the G-NFVO goes over the list
of the components specified in the NS CR and dynamically
propagates values of properties between components.

As Fig. 2 shows, to support non-K8s NFVI, we offer VIM
operators to orchestrate these NFVIs. The design follows the
same pattern as before. The desired and the observed state of
a non-K8s resource is represented using a corresponding CR
while VNFM and NFVO can manipulate the desired state to
trigger the VIM operator to reconcile the observed state of the
resource with the desired state via North Bound Interface (NBI)
of the managed NFVI (in this case OpenStack).

B. Network Service Example

To illustrate the architecture and highlight our implemen-
tation details we use an example of a Voice Over IP (VoIP)
NS. The VoIP NS comprises three CNFs – ippbx, which is
used to connect telephone extensions to the public switched
telephone, voipGateway, which is used to load balance traffic
across a dynamic pool of registered ippbx servers and sipp,
which serves as a traffic generator for the VoIP SIP protocol.
These three components exhibit chain-dependencies of prop-
erties where sipp depends on voipGateway which depends on
ippbx. Examples of these dependencies include properties such
as the K8s namespace which the NS CR will be deployed to,
and the IP addresses that will be assigned to the pods running
the CNFs. The values of these properties are not known during
the development of the NS since they are set only when the
CNFs are actually instantiated. To resolve the dependencies
between the different CNFs and to ensure that each CNF will
have the correct values of the properties it requires, dynamic
property propagation is used.

Listing 1: VoIP Network Service Custom Resource
a p i V e r s i o n : gnfo . ibm . com / v 2 a l p h a 1
k ind : N e t w o r k S e r v i c e
m e t a d a t a :

Fig. 3: VoIP Example - Operators and CRs

name : voip −network − s e r v i c e
spec :

components :
ippbx :

t e m p l a t e :
a p i V e r s i o n : ippbx . example . com / v 1 a l p h a 1
k ind : Ippbx
m e t a d a t a :

name : ”[% meta . name %]− ippbx ”
namespace : ”[% meta . namespace %]”

voipGateway :
t e m p l a t e :

a p i V e r s i o n : voipgw . example . com / v 1 a l p h a 1
k ind : VoipGW
m e t a d a t a :

name : ”[% meta . name %]−gateway ”
namespace : ”[% meta . namespace %]”

spec :
d i s p a t c h L i s t : ”[% ippbx . s t a t u s . d a t a A d d r e s s %]”
p o r t : 5060

s i p p :
t e m p l a t e :

a p i V e r s i o n : s i p p . example . com / v 1 a l p h a 1
k ind : S ipp
m e t a d a t a :

name : ”[% meta . name %]− s i p p ”
namespace : ”[% meta . namespace %]”

spec :
t a r g e t S i p A d d r e s s : ”[% voipGateway . s t a t u s . e x t e r n a l A d d r e s s %]”

In Listing-1, we show the CR of the VoIP NS. Once this VoIP
CR is deployed to K8s, the G-NFVO gets an event notification
and starts taking actions in order to bring the system to the
desired state as detailed in the CR. At the first stage, the G-
NFVO creates all the sub-resources as they are specified in the
components field. In our example it creates three additional CRs
– Ippbx, VoipGW and Sipp. These resources have their own
K8s operators which act as VNFMs that handle each CNF’s
lifecycle. Once the CNF’s properties have values assigned, the
G-NFVO propagates the values according to the specification
and makes them available to the CNF that depends on them.
A high level overview of the VoIP sample operators hierarchy
is shown in Fig. 3, including the VoIP CNFs VNFM operators
along with our G-NFVO.

In addition to the G-NFVO operator, we also supply an
SDK that facilitates development of new K8s operators for
composition of NSs, by implementing project scaffolding.

Once the NS developer declares a NS CR, and wants to
reuse it in another NS, the developer provides it as an input to
the SDK along with a name of the new component. The SDK
automatically generates a new CRD with the provided name
and a new operator that can translate any instance of the CRD
to a NS. From that point it is possible to use the newly created
CRD as one of the components in another NS descriptor. Once
the top-level NS CR is created, G-NFVO operator handles the
creation of all participating CRs including the composite CRs
that represent other NSs as described in Fig. 4.



Fig. 4: SDK Generation for Composition

The auto-generated operator is responsible for two tasks:(a)
to watch for any change in the composite CR and to create/up-
date the CRs of the component NSs (which in turn are handled
by the G-NFVO operator) and (b) to get status updates from
the CRs of the components of the NS, and to propagate status
updates to the composite CR. The auto-generated operator can
also be customized so it is possible to add custom logic on top
of the translation.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel, truly K8s based approach to NFV
MANO. Further studies are required to explore the performance
and scale of the proposed approach, also in integration with
K8s federation. It should be noted that presently comparative
quantitative study is impeded by the lack of widely accepted
benchmarks. Also, additional use cases and NFVIs should be
explored. We defer studying these aspects for future work.
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