

5GZORRO
Grant Agreement 871533

H2020 Call identifier: H2020-ICT-2019-2

Topic: ICT-20-2019-2020 - 5G Long Term Evolution

D3.1: Design of the evolved
5G Service layer solutions

Dissemination Level

 PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Intermediate version. Pending of EC revision. Do not cite.

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 2 of 152

Grant Agreement no:
871533

Project Acronym:
5GZORRO

Project title:
Zero-touch security and trust for ubiquitous
computing and connectivity in 5G networks.

Lead Beneficiary:

IBM

Document version:
V1.3

Work package:
WP3 – Evolved 5G Service layer with 5G DLT and distributed AI

Deliverable title:
D3.1: Design of the evolved 5G Service layer solutions

Start date of the project:

01/11/2019
(duration 30 months)

Contractual delivery date:

31.01.2021

Actual delivery date:

31.01.2021

Editor(s)
K. Meth (IBM)

Page 3 of 152

List of Contributors

Participant Short Name Contributor

IBM Israel Science and
Technology

IBM K. Meth, K. Barabash, D. Breitgand

Nextworks NXW Pietro Giuseppe Giardina, Juan Brenes, M. De Angelis, G. Carrozzo

Fundaciò i2CAT I2CAT A. Fernández-Fernández, C. Herranz Claveras, J. Fernández Hidalgo, M. S.
Siddiqui, A. Betzler, L. A. Ochoa, A. Ruiz Amate

Telefonica Investigación
Investigacióny Desarrollo

TID D. R. López, C. Rodríguez Cerro

Ubiwhere UW Pedro Diogo

Fondazione Bruno Kessler FBK

Universidad de Murcia UMU G. Martínez Pérez, M. Gil Pérez, P. M. Sánchez Sánchez, J.M. Jorquera Valero

Bartr Holding Limited BTL James Taylor

Altice Labs ALB Paulo Chainho, Bruno Santos, Miguel Silva

Intracom ICOM Alexios Lekidis, Vasileios Theodorou, Theodoros Bozios, Marinela Mertiri

Atos Spain ATOS Fernando Bravo

Malta Communications
Authority

MCA Jean-Marie Mifsud, Antoine Sciberras

List of Reviewers

Participant Short Name Contributor

Intracom ICOM M. Mertiri

Bartr Holding Limited BTL J Taylor

Nextworks NXW G. Carrozzo

Fundaciò i2CAT I2CAT M. S. Shuaib

Change History

Version Date Partners Description/Comments

0.0 25-09-2020 IBM, NXW Table of Contents (and editing assignments)

0.1 01-12-2020 IBM, BTL,
I2CAT,
ICOM

Background sections; initial technical content

0.2 15-12-2020 IBM, ALB,
NXW,
i2CAT,
ICOM

SW Module component specifications

Page 4 of 152

0.3 30-12-2020 IBM Additional SW Module component specifications

0.4 05-01-2021 UW Additional SW Module component specifications

0.5 07-01-2021 BTL, ICOM,
ALB

Additional SW Module component specifications

0.6 12-01-2021 UMU, IBM,
NXW,
i2CAT,
ICOM

Refinements

0.7 14-01-2021 i2CAT, BTL,
ICOM, IBM

Refinements, formatting

0.8 17-01-2021 TID, MCA,
ATOS, ALB,
IBM

Refinements, formatting

0.9 19-01-2021 UW, BTL,
i2CAT, IBM

Refinements, formatting; sent to internal reviewers

0.10 24-01-2021 ALB, BTL,
ICOM, IBM

Reviewers comments; formatting

1.0 27-01-2021 All Addressing reviewers’ comments

1.1 28-01-2021 IBM Final edits

1.2 29-01-2021 NXW, i2CAT Final QA

1.3 31.01.2021 i2CAT Final submission version

Page 5 of 152

DISCLAIMER OF WARRANTIES
This document has been prepared by 5GZORRO project partners as an account of work carried out within the
framework of the contract no 871533.

Neither Project Coordinator, nor any signatory party of 5GZORRO Project Consortium Agreement, nor any
person acting on behalf of any of them:

▪ makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any

party's intellectual property, or

▪ that this document is suitable to any particular user's circumstance; or

▪ assumes responsibility for any damages or other liability whatsoever (including any consequential

damages, even if Project Coordinator or any representative of a signatory party of the 5GZORRO

Project Consortium Agreement, has been advised of the possibility of such damages) resulting from

your selection or use of this document or any information, apparatus, method, process, or similar

item disclosed in this document.

5GZORRO has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871533. The content of this deliverable does not reflect the official
opinion of the European Union. Responsibility for the information and views expressed in the deliverable lies
entirely with the author(s).

Page 6 of 152

Table of Contents

Executive Summary ...11

1 Introduction ...12

1.1 Document scope and objectives ..12
1.1.1 Deliverable Scope with respect to the 5GZORRO Architecture specification..........................12
1.1.2 Related 5GZORRO Project Objectives ..13

1.2 Document outline ..14

2 Baseline DLT platforms ...15

2.1 DLT for Smart Contracts and Resource offering ..15
2.1.1 Relevant Entities and Modules ..16
2.1.2 Oracles ...17

2.2 DLT for distributed identities ...18
2.2.1 Relevant Entities and Modules ..21

3 Governance applications ...23

3.1 DLT Governance Manager ...23
3.1.1 5GZORRO Specific Enhancements ...24
3.1.2 Design Details ...24
3.1.3 Specific and relevant workflows ..25
3.1.4 APIs ...27
3.1.5 Information Models ...29

3.2 Identity and Permissions Manager ..30
3.2.1 Deployable Components ..31
3.2.2 Deployment scenarios ...32
3.2.3 Design Details ...34
3.2.4 Specific and Relevant Workflows ...36
3.2.5 APIs ...39

3.3 Legal Prose Management ..46
3.3.1 5GZORRO Specific Enhancements ...47
3.3.2 Design Details ...47
3.3.3 Specific and Relevant Workflows ...50
3.3.4 APIs ...52
3.3.5 Information Models ...53

3.4 Governance portal ...54

4 Trustworthy Marketplace applications ..57

4.1 Resource and Service Offer Catalogue ...58
4.1.1 5GZORRO Specific enhancements ...58
4.1.2 Design Details ...59
4.1.3 Specific and relevant workflows ..59
4.1.4 APIs ...62

4.2 Smart Contracts Lifecycle Manager ...62
4.2.1 5GZORRO Specific Enhancements ...62
4.2.2 Design Details ...63
4.2.3 Specific and relevant workflows ..64
4.2.4 APIs ...70

4.3 Marketplace portal ..74

Page 7 of 152

4.3.1 Design Details ...74
4.3.2 5GZORRO Specific Enhancements ...78

5 Cross-domain Analytics & Intelligence for AIOps ...79

5.1 Baseline Data Lake Platform..79
5.1.1 Relevant Entities and Modules ..79
5.1.2 5GZORRO specific example ..82
5.1.3 Data Lake APIs ..83
5.1.4 Data Lake Information Models ..85

5.2 Service & Resource Monitoring ..86
5.2.1 5GZORRO specific enhancements ..87
5.2.2 Design Details ...87
5.2.3 Specific and relevant workflow(s) ..87
5.2.4 APIs ...87

5.3 Monitoring Data Aggregator ...88
5.3.1 5GZORRO Specific and relevant workflow(s) ...88
5.3.2 Design Details ...88
5.3.3 APIs ...88
5.3.4 Monitoring Data Information Models..90

5.4 Intelligent SLA Monitoring and Breach Prediction ...90
5.4.1 5GZORRO Specific enhancements ...91
5.4.2 Specific and relevant workflow(s) ..92
5.4.3 APIs ...94

5.5 Smart Resource and Service Discovery application ...98
5.5.1 5GZORRO Specific enhancements ...98
5.5.2 Specific and relevant workflows ..99
5.5.3 APIs ...100

6 Information Elements ... 102

6.1 5GZORRO DIDs ...102
6.1.1 High Level View ..103
6.1.2 Detailed Information Model ..105

6.2 Resource and service modelling ...109
6.2.1 Resource Model ...109
6.2.2 Service Model ..114

6.3 Smart Contract information model ..116
6.3.1 Product Offering ..116
6.3.2 Product Order ..117
6.3.3 SLA Violation ..122
6.3.4 License Terms ...123

7 Conclusions .. 125

7.1 Deliverable contribution to 5GZORRO objectives and KPIs ..125

8 Appendix: Examples of offer types Information Elements .. 130

8.1 Information model for Spectrum product offers ..130

8.2 Information model for Cloud product offers ..136

8.3 Information model for RAN product offers ..137

8.4 Information model for VNF/CNF product offers ..144

8.5 Information models for Network Slice and Network Service product offers148

Page 8 of 152

9 References .. 150

10 Abbreviations ... 152

List of Tables

Table 1-1: 5GZORRO Technical Objectives in scope .. 14
Table 3-1: 5GZORRO Entities Subject to Governance ... 24
Table 3-2: Definition of Governance Portal’s User Stories .. 55
Table 4-1: Definition of Marketplace Portal’s User Stories ... 75
Table 5-1: Data Lake availableResources .. 85
Table 5-2: listPipelines output structure ... 86
Table 5-3: Resource Monitoring information .. 90
Table 5-4: Lookup Monitoring Data Structure .. 90
Table 5-5: Definition of Start SLA Breach service interface ... 94
Table 6-1: Mapping of 5GZORRO DID Subjects to 5GZORRO Services .. 103
Table 6-2: Resource candidate Information Model [9] ... 109
Table 6-3: ResourceCategoryRef Information Model [9] .. 110
Table 6-4: ResourceSpecificationRef Information Model [9] .. 110
Table 6-5: ResourceSpecification Information model ... 111
Table 6-6: resourcePhysicalCapabilities Information Model ... 111
Table 6-7: resourceVirtualCapabilities Information Model ... 111
Table 6-8: Service candidate Information Model [12]... 114
Table 6-9: ServiceCategoryRef Information Model [12].. 115
Table 6-10: ServiceSpecificationRef Information Model [12] ... 115
Table 6-11: TargetServiceSchema Information Model [12] .. 116
Table 6-11: Product Offering Information Model ... 117
Table 6-11: Product Order Information Model ... 117
Table 6-11: SLA violation Information Model .. 122
Table 6-11: License Terms Information Model.. 123
Table 7-1: D3.1 contribution to 5GZORRO objectives and KPIs. ... 126
Table 8-1: Spectrum Product Offering Information Model ... 130
Table 8-2: GeographicLocation Information Model .. 131
Table 8-3: Spectrum Product Service Level Agreement Information Model .. 132
Table 8-4: Spectrum Product Offering Price Information Model .. 133
Table 8-5: Spectrum resource ResourceCandidate Information Model ... 134
Table 8-6: Spectrum resource ResourceSpecification Information Model ... 134
Table 8-7: Spectrum operation mode ResourceSpecCharacterstic Information Model 135
Table 8-8: Start DL frequency ResourceSpecCharacterstic Information Model .. 135
Table 8-9: End DL frequency ResourceSpecCharacterstic Information Model ... 135
Table 8-10: Start UL frequency ResourceSpecCharacterstic Information Model ... 135
Table 8-11: End UL frequency ResourceSpecCharacterstic Information Model ... 136
Table 8-12: Cloud Product Offering Information Model ... 136
Table 8-13: RAN Product Offering Information Model ... 137
Table 8-14: Address Information Model [17] .. 138
Table 8-15: RAN Product Service Level Agreement Information Model ... 139
Table 8-16: RAN Product Offering Price Information Model... 140
Table 8-17: RAN Product Specification Information Model .. 141
Table 8-18: RAN resource ResourceSpecification Information Model .. 142
Table 8-19: Operation band ResourceSpecCharacteristic Information Model ... 142

Page 9 of 152

Table 8-20: Quota ResourceSpecCharacterstic Information Model ... 143
Table 8-21: VNF ResourceCandidate Information Model ... 144
Table 8-22: VNF resource ResourceSpecification Information Model .. 144
Table 8-23: vnfdId ResourceSpecCharacteristic Information Model .. 144
Table 8-24: vnfProvider ResourceSpecCharacteristic Information Model .. 144
Table 8-25: vnfProductName ResourceSpecCharacteristic Information Model ... 145
Table 8-26: vnfSoftwareVersion ResourceSpecCharacteristic Information Model 145
Table 8-27: vnfdVersion ResourceSpecCharacteristic Information Model ... 145
Table 8-28: vnfProductInfoName ResourceSpecCharacteristic Information Model 145
Table 8-29: vnfProductInfoDescription ResourceSpecCharacteristic Information Model 146
Table 8-30: vnfdRef ResourceSpecCharacteristic Information Model .. 146
Table 8-31: localizationLanguage ResourceSpecCharacteristic Information Model 146
Table 8-32: configurableProperties ResourceSpecCharacteristic Information Model 146
Table 8-33: cpuRequirements ResourceSpecCharacteristic Information Model .. 147
Table 8-34: memoryRequirements ResourceSpecCharacteristic Information Model 147
Table 8-35: storageRequirements ResourceSpecCharacteristic Information Model 147
Table 8-36: Network slice ServiceCandidate ... 148
Table 8-37: Network slice ServiceSpecification Information Model ... 148
Table 8-38: Network service ServiceCandidate Information Model ... 148
Table 8-39: Network service ServiceSpecification Information Model ... 148
Table 8-40: Network slice ProductOffering information model .. 149
Table 8-41: Network service ProductOffering information model ... 149

List of Figures
Figure 1-1: 5GZORRO High Level reference architecture .. 13
Figure 2-1: Corda Node.. 16
Figure 2-2: High-level Corda Network Architecture .. 17
Figure 2-3: Hyperledger Identity “stack”: URSA, INDY and ARIES ... 18
Figure 2-4: Decentralised Identity Foundation projects scope ... 19
Figure 2-5: Existing DLT Modules to be Leveraged by 5GZORRO Identity and Permissions Manager 21
Figure 2-6: Hyperledger ARIES Cloud Agent Python Architecture .. 22
Figure 3-1: Governance Platform Architecture ... 23
Figure 3-2: Governance Manager Module Architecture ... 25
Figure 3-3: Governance Workflow .. 26
Figure 3-4: Stakeholder Membership Application .. 26
Figure 3-5: Identity and Manager Deployable Components and their interfaces .. 32
Figure 3-6: Identity and Permission Agents Deployment Scenario ... 33
Figure 3-7: DID Agent Design ... 34
Figure 3-8: APIs implemented by 5GZORRO Agents ... 35
Figure 3-9: Agent Bootstrap Workflow ... 36
Figure 3-10: DID Creation Workflow ... 37
Figure 3-11: Credential Verification Workflow .. 38
Figure 3-12: Credential Issue Workflow .. 38
Figure 3-13: DID State Machine ... 42
Figure 3-14: Proof State Machine .. 46
Figure 3-15: Legal Prose Management Module Architecture ... 48
Figure 3-16: Accord Project Template Composition ... 48
Figure 3-17: Accord Template & Contract definition .. 49

Page 10 of 152

Figure 3-18: Example Accord contract execution context .. 50
Figure 3-19: Publish Prose Template Creation .. 51
Figure 4-1: Marketplace Platform Architecture .. 57
Figure 4-2: Resource and Service Catalogue Architecture .. 59
Figure 4-3: On-boarding of resource asset workflow .. 60
Figure 4-4: Composition and publishing of product offers workflow ... 60
Figure 4-5: Retrieval of DLT-announced product offers workflow .. 61
Figure 4-6: Searching for offers and capture of product orders workflow ... 61
Figure 4-7: Smart Contract Lifecycle Manager Module Architecture ... 63
Figure 4-8: Publish a Product Offer ... 65
Figure 4-9: Publish a Product Order Agreement ... 66
Figure 4-10: SLA Lifecycle Management.. 67
Figure 4-11: Monitoring and SLA Compliance ... 69
Figure 5-1: Operational Data Lake example .. 81
Figure 5-2: Typical Data Lake analytics pipeline setup .. 81
Figure 5-3: Resource Monitoring and SLA breach detection/prediction .. 83
Figure 5-4: SLA Monitoring & Breach Prediction inter-communication Architecture 91
Figure 5-5 SLA monitoring and breach prediction architecture .. 92
Figure 5-6: SLA Breach Prediction workflow ... 93
Figure 5-7: Smart Resource and Service Discovery application architecture .. 99
Figure 5-8: Smart resource and service discovery workflow .. 100
Figure 6-1: Resource Model Class Diagram ... 109
Figure 6-2: PhysicalResource Class Diagram ... 113
Figure 6-3: VirtualResource Class Diagram ... 113
Figure 6-4: Service Model Class Diagram .. 114
Figure 6-5: Product Offering Object .. 118
Figure 6-6: Product Offerings Actions ... 119
Figure 6-7: Product Order Object .. 120
Figure 6-8: Product Order Actions ... 121
Figure 6-9: SLA Violation Object .. 122
Figure 6-10: SLA Violation Flow ... 123
Figure 6-11: contract state object and associated flows ... 124

Page 11 of 152

Executive Summary

This deliverable specifies the architecture of data-driven solution for DLT and distributed intelligent resource
discovery and management in use in 5GZORRO project.

The report contains the domain-specific systems architecture of DLT and 5G Operational Data Lake elements,
and describes key interactions of their constituent modules to implement the envisaged Zero-Touch SLA
Smart Contract, resource discovery, allocation and provisioning services offered by the 5GZORRO platform.

The 5GZORRO software platform is divided in four major software platforms, as established in deliverable
D2.2: (i) Marketplace; (ii) Governance; (iii) Cross-domain Analytics & Intelligence for AIOps; (iv) Zero-touch
Service Management and Orchestration. The aim of this deliverable is to describe the first version of the
software platform design for the Marketplace and the Governance and the Cross-domain Analytics &
Intelligence for AIOps, which provide the 5GZORRO platform the capabilities to establish a multi-domain
marketplace of resources and services with automated service management capabilities.

Using these components, the 5GZORRO platform can support the following three 5GZORRO use cases:

1. Use case 1 – Smart Contracts for Ubiquitous Computing/Connectivity;

2. Use case 2 – Dynamic spectrum allocation;

3. Use case 3 – Pervasive virtualized Content Distribution Network (vCDN) Services.

The outputs of this deliverable serve as input for the implementation work that is being carried within the
project and will documented in next deliverables D3.2 (Prototypes of evolved 5G Service layer solutions) and
D4.3 (Final prototype of Zero Touch Service Management with Security and Trust). Performance evaluation
and validation of the design artifacts described in this document will occur through workpackage WP5
(Validation through Use Cases).

Page 12 of 152

1 Introduction
This document describes the architecture of data-driven solution for Distributed Ledger Technologies (DLT)
and distributed intelligent resource discovery and management for the 5GZORRO software platform.

Based on the overall 5GZORRO architecture described in deliverable D2.2 [1], this document focuses into the
per-domain and cross-domain management layers, and the boundary between them.

This design report contains domain-specific systems architecture of DLT and 5G Operational Data Lake
elements to be used in 5GZORRO, and describes key interactions of their constituent modules to implement
the envisaged Zero-Touch SLA Smart Contract, resource discovery, allocation and provisioning services
offered by 5GZORRO platform.

1.1 Document scope and objectives

5GZORRO tries to address the following three use cases:

• Use case 1 – Smart Contracts for Ubiquitous Computing/Connectivity;

• Use case 2 – Dynamic spectrum allocation;

• Use case 3 – Pervasive virtualized Content Distribution Network (vCDN) Services.

As discussed in deliverable D2.2, to address these use cases, 5GZORRO incorporates solutions based on three
novel concepts:

• Data-driven and Artificial Intelligence (AI) based solutions which can enable automatic and
autonomous network operations following AI Operations (AIOps) paradigm.

• Distributed Ledger Technologies (DLT) which enable trust and security in multi-party end-to-end
service/slice implementation.

• Cloud-Native technologies which once integrated into Software Defined Network (SDN) and Network
Function Virtualisation (NFV) environments can increase the level of flexibility required by advanced
5G based services (e.g., scalability, resilience).

The combination of these three concepts is the basis for realization of the three main 5GZORRO innovations:

• Zero-touch/Automated Resource discovery using DLT/Blockchains.

• Intelligent 3rd party resource selection, request and access/usage.

• Trust establishment among multiple parties.

1.1.1 Deliverable Scope with respect to the 5GZORRO Architecture specification

A simplified high-level view of the 5GZORRO architecture is shown in Figure 1-1.

The 5GZORRO software platform is divided in four major software platforms, as established in D2.2: (i)
Marketplace; (ii) Governance; (iii) Cross-domain Analytics & Intelligence for AIOps; (iv) Zero-touch Service
Management and Orchestration. The Zero-touch Service Management and Orchestration embraces all the
software modules involved in the service and Network Slice lifecycle management, both at the intra and the
inter-domain layers, and the required components in order to interact with the underlying NFVI. This
platform part is described in deliverable D4.1 [3].

The Marketplace holds the resource and service offers, containing the high-level descriptions of the
resources and services together with the business level SLAs and the pricing mechanisms established for the
offer. The Marketplace relies on different DLT technologies for a secure synchronization of the offers on the
catalogue across domains, and for the establishment of smart contracts reflecting the offer acquisition. The
Governance platform supplies the identity management and authentication and authorization functionalities

Page 13 of 152

across domains, and contains the catalogue of the legal statement templates to be attached to the resource
and service offers in the Marketplace.

The Cross-domain Analytics & Intelligence for AIOps provides the software functionality to take automated
decisions, based on AI control loops, to optimize the service deployment across multiple domains and to
predict possible SLA outbreaks.

Figure 1-1: 5GZORRO High Level reference architecture

The scope of this deliverable is to describe the first version of the software platform design for the
Marketplace, the Governance and the Cross-domain Analytics & Intelligence for AIOps. The aim is to provide
more in depth details on the platform capabilities expected to establish a multi-domain marketplace of
resources and services with automated service management capabilities.

Further to deliverable D2.2, this document fulfils the objective of providing the next level of design details to
serve as input for software development activities within the workpackage WP3.

The document also defines a 5G-oriented DLT infrastructure and a 5G Operational Data Lake capable of
supporting multi-party value layer for Smart Contracts and AI-based automated resource management.

1.1.2 Related 5GZORRO Project Objectives

The operative objectives addressed through this deliverable are:

• Design and implementation of a 5G DLT infrastructure to serve as a common enabler for the various
5GZORRO distributed services.

• Define and implement APIs and intelligent resource management components to build a shared
operational data repository (i.e., the 5G Operational Data Lake) to enable innovative 5G management
functionalities and services.

• Design and development of a Multi-Party Value Layer in which Smart Contracts can be defined and
activated across multiple parties.

• Develop a distributed multi-party resource discovery (extended to spectrum), and intelligent
resource brokerage & selection.

Page 14 of 152

• Design and development of Smart Contract management to support service applications.

The below table describes the main technical objectives to realize the 5GZORRO marketplace for autonomous
trading of 5G-orientated infrastructure and spectrum.

Table 1-1: 5GZORRO Technical Objectives in scope

5GZORRO Technical Objective D3.1 Contribution

OBJ-3. Define a Smart Contract ecosystem anchored on a native
distributed ledger to allow commercial and technical data provided by
3rd-party users to be standardised and mapped into Smart Contracts,
which can be initiated “at will” between multiple untrusted parties.

• Smart Contract system
design

OBJ-4. Define solutions for secure, automated and intelligent resource
discovery, brokerage and selection, operation with SLA to facilitate
workload offloading to 3rd-party resources supporting pervasive
computing across multiple 5G domains.

• AI-driven Resource
Discovery &
Management solution
design

OBJ-5. Define and prototype a secure shared spectrum market to enable
real-time trading of spectrum allocations between parties that do not
have a pre-established trust relationship.

• Spectrum Market
application design

1.2 Document outline

The document is structured as follows:

• Section 2 covers the baseline Distributed Ledger Technology (DLT) platforms. Many of the 5GZORRO
concepts are dependent on the DLT.

• Section 3 covers the software modules that provide Governance of a 5GZORRO deployment.

• Section 4 presents functionalities and components of the 5GZORRO Marketplace Platform, aimed to
facilitate multi-party collaboration in dynamic 5G environments.

• Section 5 describes the modules that enable cross-domain analytics, including the cross-domain Data
Lake.

• In Section 6 the data models used by the various interacting components are decribed.

• In Section 7 it is summarize how the presented material contributes to the 5GZORRO objectives and
KPIs.

• Section 8 is the deliverable appendix in which examples of offer types Information Elements are
collected.

Page 15 of 152

2 Baseline DLT platforms

Based on a thorough review of the suitability of DLTs for the 5GZORRO platform, two categories of DLT

requirements can be identified, one to support marketplace resource and service trading and the other to

support cross-domain identity and permissions. Lengthy investigation led to the conclusion that whilst a

single DLT COULD be used to satisfy both use cases, the decentralised identity requirement represented an

opportunity to leverage a DLT developed specifically for this use case.

Several strong candidates in R3 Corda [40], Hyperledger Fabric [42] and Quorum [41] were reviewed for

supporting the 5GZORRO marketplace trading of resources / services, the associated agreement lifecycles

and SLA enforcement. It is likely that all three DLTs shortlisted for review would be capable of servicing the

requirements imposed by the 5GZORRO marketplace. However, R3 Corda was favoured as the exemplary

implementation on account of the distinguishing features described below.

Hyperledger Indy [22] has been built from the ground up to support the decentralized identity use case and

as such has been selected to realise a governance DLT to manage decentralized identifiers (DIDs) and the

issuance/verification of Verifiable Claims to support identity and permission requirements. It was decided

that this was preferable to the alternative of utilising a single DLT to satisfy both use cases, which would have

involved significant effort to design and implement what is already offered out-of-the-box by Hyperledger

Indy.

2.1 DLT for Smart Contracts and Resource offering

Each of the afore-mentioned DLTs provide features to satisfy enterprise requirements to varying degrees.

Analysis covered both technical and business-level considerations around privacy, performance and

project/community health.

R3 Corda takes a novel approach in that ledger state (“facts”) is only shared amongst network participants

on a need-to-know basis. To this end, it is ideally placed to offer the privacy required to support agreements

between stakeholders in the 5GZORRO marketplace.

The adoption of the UTXO model (unspent transaction output1) means that Corda achieves high transaction

throughput and transactions only need to be executed by the interested parties rather than all ledger

participants. Quorum achieves much lower transaction rates and whilst Hyperledger Fabric is performant,

its requirement for channels and side-channels to achieve the same level of privacy make it less suitable. In

contrast to Hyperledger Fabric and Quorum, Corda is byzantine fault tolerant out-of-the-box.

Corda has a concept of Flows that enables business logic to be coded at the DLT level for orchestrating
complex business processes involving multi-stage ledger state changes and the gathering of signatures from
participants, oracles and the notary pool. Checkpointing of these flows means that a flow can – for example
– recover when a participant node is unavailable, whereby a flow state will be checkpointed, persisted and
retried. This DLT-native orchestration is not a feature of either Quorum or Hyperledger Fabric.

1 R2 Corda, What is a UTXO?, available online at: https://www.r3.com/blog/what-is-a-uxto/

https://www.r3.com/blog/what-is-a-uxto/

Page 16 of 152

Corda has a strong focus on legally enforceable smart contracts, where legal prose is associated with a given
contract state. This clearly is a key facet to ensure 5GZORRO can trust in the enforceability of business
agreements made through the 5GZORRO platform.

2.1.1 Relevant Entities and Modules

The Corda DLT infrastructure will be realised through the utilisation and implementation of both application
and network elements offered by the open-source platform.

Implementation of the contract and business logic is achieved through contract states, contracts and flows.
These are the elements that will enable the autonomous lifecycle of marketplace agreements and SLAs and
ensure that ledger state transitions evolve only in accordance with the rules defined in smart contracts.
Figure 2-1 illustrates how each of the DLT elements outlined below contribute to a ledger update, from RPC
call, through to contract execution, verification and finally vault update (commitment of the transaction).

Figure 2-1: Corda Node

Contract States & Vault: In Corda, ledger states are only distributed on a need-to-know basis, i.e., a
transaction involving two participants would be executed by them and on notarisation (verification by the
notary) committed to each participant node’s vault; the vault is a Postgres database where all state is stored
by a given node. Contract states are classes that encapsulate on-ledger facts and as such will be used to
represent 5GZORRO products, SLAs and Agreements.

Contracts: Contracts are deterministic classes that govern the state transitions and parties required to sign
transactions before they can be committed to the ledger. Contracts are contract state companions and will
be used to define the governance rules over valid state transitions of the ledger, e.g., what parties are
permitted to update a 5GZORRO agreement or record an SLA violation.

Flows: Flows will be used to define multi-step processes that orchestrate the composition and agreement
(signing) of transactions. For example, flows will be developed to support marketplace operations such as
registering product offers and negotiating agreements. Each defined flow will programmatically define the
input/output states of a transaction, mediate the negotiation of agreements, collection of stakeholder
signatures and notarisation prior to committing the transaction to the ledger. Flows can also comprise of
sub-flows, acting as a means of initiating subsequent actions such as billing events on termination of an
agreement.

Page 17 of 152

CorDapp & RPC: CorDapps are distributed applications that run on each corda node. They encapsulate the
flows, contracts and contract states. Once a CorDapp is deployed to a node, the owner can invoke it’s flows
and query vault state over RPC. It is via this RPC interface that the 5GZORRO service layer will interact with
the DLT.

There are also certain Corda network components that will need to be deployed to realise the 5GZORRO DLT
infrastructure.

Network Map (Cordite): A network map server is required for nodes to register and discover one another on
a Corda network. As part of the DLT infrastructure a Cordite Network Map server will be deployed and
operated by the DLT operator. Cordite is an open-source implementation of Corda’s Network Map and
Doorman protocols that govern access to the network. This service facilitates the administration of
stakeholder node participation on the Corda network and addition/removal of notaries.

Participant Nodes: Each 5GZORRO stakeholder (provider, consumer, regulator etc.) will deploy a Corda node
and the 5GZORRO CorDapps to execute (via RPC client). It will be configured to use the 5GZORRO network
map in order to discover other network participants, notaries and oracle services.

Notary: In order to ensure that transactions are valid and no double-spends have occurred, the DLT operator
will deploy a Notary pool of one or more nodes. The notary will sign all transactions prior to being committed
to the ledger.

Figure 2-2 gives a high-level overview of the architecture of a Corda network, the key nodes and services that
are deployed and their role. Each stakeholder will deploy nodes with the 5GZORRO CorDapp(s) that
encapsulate the flows to achieve the necessary ledger updates for the marketplace.

Figure 2-2: High-level Corda Network Architecture

2.1.2 Oracles

There are several Oracle services required by the 5GZORRO DLT to provide access to off-chain data and

external attestation to ledger facts. The following Oracles and associated use cases have been identified:

Page 18 of 152

Resource Proxy Oracle

DEPLOYED BY: Governance Admin Operator

An oracle service will be deployed by Governance Admin operators for confirming the successful deployment
of one or more resources under an agreement prior to entering the monitoring phase. This therefore allows
the attestation to the fact that a resource has been provisioned successfully as an integral element of the
ledger transaction. The oracle will utilise service descriptors found in the Decentralised Identifier (DID)
document associated with the resource in order to determine whether it has been provisioned successfully
and on successfully testing all endpoints will sign the transaction. In turn, the transaction can be validated
and committed to the ledger.

DID Smart Contract Oracle

DEPLOYED BY: Governance Admin Operator

A trusted oracle service will be deployed by the network operator such that attestation can be provided as
to the validity (verification of) verifiable credentials for certain transactions. This oracle will utilise a DID
agent belonging to the operator for the purposes of verifying credentials. It will optionally also verify signed
content as part of its attestation as needed. Example uses will be for verifying spectrum rights when a
provider wishes to publish an offer in the marketplace, and verification of whether an SLA Violation being
posted to the DLT by the permitted monitoring service declared in the contract.

2.2 DLT for distributed identities

As introduced in deliverable D2.2, 5GZORRO has adopted the W3C Decentralised Identifiers (DIDs)[18] and
associated Verifiable Credentials (VCs)[19] as key enablers to implement trusted interactions across domains.
The W3C standardisation work is evolving with the support of two major reference implementations
initiatives covering different functionalities: Linux Foundation Hyperledger Identity “stack” and Decentralised
Identity Foundation.

Figure 2-3: Hyperledger Identity “stack”: URSA, INDY and ARIES

The Linux Foundation Hyperledger Identity “stack” was created from original Sovrin Foundation[20] code
base and is comprised of three main projects presented in Figure 2-3:

Page 19 of 152

• The Hyperledger URSA [21] project provides cryptographic primitives. Ursa packages the primitives
in a way that can be consumed by Indy, Aries and any other software that needs a solid, vetted
cryptographic base.

• The Hyperledger Indy Node[22] project is currently the main reference implementation of a
Distributed Ledger (based on Redundant Byzantine Fault Tolerant – RBFT - state machine replication
consensus protocols) to provide a W3C compliant self-sovereign identity ecosystem.

• The Hyperledger ARIES[23] complements Hyperledger Indy Node by providing a toolkit to create DID
Agents that manage the creation, transmission, storage and verification of DID verifiable digital
credentials that are compliant with W3C Verifiable Credentials. This project is jointly working with
Decentralized Identity Foundation (DIF) (see below) to develop a secure and standard
communication based on DIDs — DIDComm – to enable DID Agents interoperability independently
of the DLT technology used.

The Decentralised Identity Foundation (DIF)[24] is another initiative around decentralised identities aiming

to enable interoperability between any DID independently of the DLT used.

Figure 2-4: Decentralised Identity Foundation projects scope

The following DIF projects are taken into account:

• Universal Resolver [25]: an identifier resolver that works with any decentralised identifier system. It

is a server that utilises a collection of DID Drivers to provide a standard means of lookup and

resolution for DIDs across implementations and decentralised systems and that returns the DID

Document Object (DDO) that encapsulates DPKI (Decentralised Public Key Infrastructure) metadata

associated with a DID.

• Universal Registrar [26]: an identifier registrar that works with any decentralised identifier system

that utilises a collection of DID Drivers to provide a standard means to create, update and deactivate

DIDs and DID Documents.

• DIF Identity Hubs [27]: a replicated mesh of encrypted personal datastores, composed of cloud and

edge instances (like mobile phones, PCs or smart speakers), that facilitate identity data storage and

identity interactions. Current reference implementation is in Node.js.

https://github.com/hyperledger/ursa
https://github.com/hyperledger/indy-node
https://github.com/hyperledger/aries
https://identity.foundation/working-groups/did-comm.html
https://identity.foundation/
https://github.com/decentralized-identity/universal-resolver
https://github.com/decentralized-identity/universal-resolver
https://github.com/decentralized-identity/universal-registrar
https://github.com/decentralized-identity/universal-registrar
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/decentralized-identity/hub-reference

Page 20 of 152

• DID Communication [28]: provides an asynchronous encrypted protocol for secure, private and

authenticated message-based communication, where trust is rooted in DIDs and used over a wide

variety of transports.

Other related projects were considered and researched:

• The Sovrin Foundation [20] is a public service utility that aims to promote the usage of self-sovereign
identity on the Internet. It operates the Sovrin Network, which in turn is built on top of Hyperledger
Indy. Many relevant W3C DID and Verifiable Credential concepts were originally conceived by the
Sovrin foundation. The original code base of Hyperledger INDY was itself contributed by the Sovrin
Foundation.

• The Trust over IP (ToIP) Foundation [29], which belongs to non-profit organization Linux Foundation,
aims to determine a complete architecture for Internet-scale digital trust that incorporates
cryptographic trust at the machine layer with human trust at the business, legal, and social layers.
The ToIP Foundation works closely with other standards development organizations (SDOs), industry
foundations, and other consortia to combine their open standards, architectures, and protocols into
a complete and coherent stack for Internet-scale digital trust infrastructure. Thus, the starting
definition of the ToIP stack was published as Hyperledger Aries RFC 0289.

• The Cordentity [30] app integrates Hyperledger Indy capabilities into the Corda platform. According
to its documentation, Cordentity is a self-contained CorDapp that integrates Hyperledger Indy, for
decentralised identity, with the R3 Corda Platform. This lab creates interoperability of two purpose-
built ledger technologies, each with a focus on privacy. Corda is designed to enable private transact
and Indy is a ledger built specifically for self-sovereign identity.

• SOFIE (Secure Open Federation for Internet Everywhere) [31] European Union's HORIZON 2020

project presented and evaluated how the Identification, Authentication, and Authorization (IAA)

component can be used to manage IoT devices using Decentralised Identifiers (DIDs). Security in

SOFIE is managed by the IAA, and Privacy and Data Sovereignty (PDS) components, which

encompasses Hyperledger Indy, JSON web tokens, and OAuth2.0.

• PyDentity [32] is a project of OpenMined community whose goal is to make the world more privacy-

preserving by lowering the barrier-to-entry to private AI technologies. PyDentity implements secure

identification and authentication procedures using W3C DIDs and VCs by leveraging Hyperledger

Aries and Indy.

• TrustID [33] solution generates a decentralised identity model using Public Key Infrastructures (PKIs)

and signatures using the standard DID from the W3C where users and services are identified through

a DID. The basic features are:

o Authenticated system interactions using PKI and signatures and following the JOSE standard

(Json Object Signing and Encryption).

o Verified identities by a set of controllers.

o The possibility for the user to guard his/her own keys is contemplated.

o HSM integration for the key custodian.

After analysing the current approaches using DIDs and VCs, a straightforward trend has been observed in the

determination of Hyperledger Indy as the most widely used distributed ledger to incorporate the registration

of W3C DIDs and Verifiable Credentials.

https://identity.foundation/working-groups/did-comm.html
https://sovrin.org/
https://trustoverip.org/
https://github.com/hyperledger/aries-rfcs/tree/master/concepts/0289-toip-stack
https://github.com/hyperledger-labs-archives/cordentity
https://www.sofie-iot.eu/results/project-deliverables
https://github.com/OpenMined/PyDentity
https://trustos.readthedocs.io/en/latest/id.html

Page 21 of 152

2.2.1 Relevant Entities and Modules

The most relevant W3C DID related open source projects, briefly introduced above, were experimented with,
taking into account the functional requirements described in D2.2. According to this experimental evaluation
the following components were selected (see Figure 2-5):

Figure 2-5: Existing DLT Modules to be Leveraged by 5GZORRO Identity and Permissions Manager

The Hyperledger INDY DLT was selected to provide decentralised verifiable DID Registry features including
creation and verification of identifiers, verifiable credential schemas, revocation registries and the issuer of
public keys. As experimented Hyperledger INDY DLT should provide all required features and no development
is expected by 5GZORRO.

The Hyperledger ARIES Cloud Agent Python (ACA-Py) [34] was selected as the main baseline for 5GZORRO
Identity and Permission manager (Id&P) features development. According to ACA-Py architecture (see Figure
2-6), the development of 5GZORRO Id&P business logic should be done as an ACA-Py controller. Such
controller registers a webhook with the agent, and the event notifications are HTTP callbacks, and the agent
exposes a REST API to the controller for all of the administrative messages it is configured to handle. Each of
the DIDcomm protocols supported by the agent adds a set of administrative messages for the controller to
use in responding to events. The Aries Cloud Agent includes an OpenAPI (aka Swagger) user interface for a
developer to explore the API for a specific agent. The Indy SDK is embedded in the Aries cloud agent and
implements the default secure storage. In the current Aries Cloud Agent implementation, the Indy SDK
provides an interface to an Indy-based public ledger for verifiable credential protocols. In future, ledger
implementations (including those other than Indy) might be moved into the DIDcomm protocol modules to
be included as needed within a configured Aries cloud agent instance based on the DIDcomm protocols used
by the agent. 5GZORRO may contribute to ARIES Cloud Agent Python (ACA-Py) development in case new
features are required.

Page 22 of 152

Figure 2-6: Hyperledger ARIES Cloud Agent Python Architecture

Since the Hyperledger ARIES Cloud Agent Python (ACA-Py) is very much focused on the management of
Verifiable Credentials, the Decentralised Identity Foundation Universal Registrar and Universal Resolver have
been selected as alternatives to manage DID Documents. The usage and, if required, the extension of the
existing Sovrin driver with specific features required by 5GZORRO Id&P is anticipated.

Page 23 of 152

3 Governance applications

The 5GZORRO governance platform comprises a set of software modules that is deployed by admin
stakeholders and provides core marketplace capabilities to other stakeholder platforms. Services include
marketplace governance management, decentralized identity & claims verification, and a managed
repository of legal prose templates. Whilst deployed only by admin stakeholders, the services provided by
these applications are made available to all 5GZORRO stakeholder platforms through service interfaces.
These services can be discovered - and subsequently utilised - by non-admin stakeholders using service
endpoints captured in a “Governance Board” DID doc; this is described in more detail in the sections that
follow.

A governance portal is provided to enable governance admin stakeholders to perform associated workflow
tasks such as vote on platform membership requests and review proposed legal prose template updates.

Figure 3-1: Governance Platform Architecture

3.1 DLT Governance Manager

Central to the 5GZORRO Governance Platform, the Governance Manager module is responsible for
facilitating and coordinating marketplace governance in a decentralised manner. Administrators of the
platform (Marketplace Governance Board) are responsible for partaking in reviewing and voting on proposals
subject to governance. This decentralized process will be underpinned by the Governance DLT in order to
ensure full transparency and auditability. The voting permission and requirement is dictated by the presence
of an admin stakeholder in the Governance Board DID document and associated Verifiable Credential.

Since governance is not strictly in scope for 5GZORRO, a simplified governance framework will be
implemented for a defined set of scenarios and a simplified model e.g., all admins approve.

Page 24 of 152

3.1.1 5GZORRO Specific Enhancements

By leveraging DLT to underpin the marketplace governance we see the decentralized management of the
platform with greater transparency and auditability. Specifically, the following processes and entities will
be subject to 5GZORRO governance.

Table 3-1: 5GZORRO Entities Subject to Governance

Entity Governance
Processes

Description

Stakeholder Registration Ability for each stakeholder to apply, stating their intended role and
capabilities

Service Level
Agreement
Breach

Dispute Ability for a provider to initiate a dispute process; supplying
appropriate evidence to support the claim. This should result in a
consortium decision that is either upheld or rejected.

Legal Prose /
License
Template

Propose New /
Propose Archive

Each legal prose template should be subject to a governance process
before being approved for use in the marketplace. By doing so we
can be sure that the prose and model of contracts has been subject
to scrutiny and marketplace stakeholders can have confidence in
their utilisation

Governance proposals such as a new Stakeholder registration or new legal prose template will be identified
by a generated DID and the lifecycle events (votes and approve/reject) pertaining to the DID captured
through the issuance of verifiable claims.

Various legal requirements apply across Europe in relation to 'fit and proper' persons/entities owning
spectrum. It is standard practice for due diligence to take place to qualify persons/entities applying for
spectrum rights. In the case of 5GZORRO and to facilitate the real-time approach, such qualification will take
place during the on-boarding process (see 3.2.4.1. where this workflow is initiated). Furthermore, approval
of a membership request from a party wishing to offer spectrum will be at the discretion of the regulator.

Where it is not practical for a regulator to approve spectrum resource trading in real-time, the 5GZORRO
platform will also afford oversight of all Spectrum trades through the Marketplace Portal. As such, if on
inspection the regulator deems a trade improper e.g., the consumer should not legitimately be able to hold
the spectrum, then the regulator will also have the capability to terminate the agreement.

3.1.2 Design Details

The Governance Manager plays a key role in the attainment of the following KPIs:

• Provide mechanisms for zero touch trust automation in multi-domain scenarios on top of a 5G service

management framework (KPI target: to cover up to 4 different stakeholders as part of the automated trust

establishment process and to enable its automatic renegotiation when a stakeholder is joining or leaving

the trust link).

• The approval mechanism to be a resource provider in 5GZORRO MUST be handled according to 5GZORRO

decentralized governance model (distributed consensus). A governance model that considers at least 2

admin stakeholders and 1 regulator stakeholder with the power to veto issuance of spectrum rights should

be demonstrated)

In order to deliver the afore-mentioned capabilities the internal architecture of the Governance Manager module

is shown below, comprising the following main entities:

Page 25 of 152

• API: a set of APIs implemented to expose the module capabilities regarding the proposal of a

particular action subject to governance, and interfaces to support the subsequent voting and

issuance of a decision

• Governance Manager: Functional entity that implements the logic of the Governance Manager,

interacting with the Governance DID Agent for the purposes of issuing the necessary DIDs and VCs

that capture the definition and status of governance decisions in a verifiable manner. Distributed

storage will be leveraged such that admin stakeholders can keep a synchronized view of membership

and proposal status’ and support query capabilities

Figure 3-2: Governance Manager Module Architecture

3.1.3 Specific and relevant workflows

 General governance workflow

The process of proposal, voting and decision is largely the same for each governance process considered for

5GZORRO and the steps are illustrated below.

Step 1: a proposal is made by an entity to the governance manager deployed in the domain of a stakeholder

on the Governance board. The discovery of this service is achieved through accessing the DID doc of the

Governance Board DID and resolving an endpoint identified in there.

Step 2-3: a DID is created for global identification of the proposal and the proposal stored in distributed

storage with a status of PROPOSED.

Step 4-5: the stakeholder reviews the evidence associated with the proposal through the governance portal

and votes (approve/reject) issuing a VC for the proposal DID to capture their decision.

Step 6-7: Likewise, each other member of the governance board will review and submit their vote via the

Governance Portal, again issuing a VC to reflect their decision.

Step 8: the final voting admin will also generate a VC to reflect the outcome based on the votes cast and in-

line with the adopted governance model.

Step 9-10: The decision/outcome is then published for the requesting entity to process accordingly.

Page 26 of 152

Figure 3-3: Governance Workflow

 Stakeholder membership request

The below workflow outlines the steps relating to a membership request, whereby a request results in a

membership record (and associated status) being persisted in distributed storage (accessible by each

governance board member) for the purposes of supporting query functionality.

Figure 3-4: Stakeholder Membership Application

Page 27 of 152

Pre-conditions: The new 5GZORRO platform has generated a DID and appropriate VCs that encapsulate their

identity and intended roles/permissions within the 5GZORRO ecosystem.

Step 1: New 5GZORRO stakeholder makes a request to a Governance Manager endpoint deployed in the

domain of a Governance Board member. Discovery, as previously described, is achieved through the DID doc

of the Governance Board DID.

Step 2: A membership record is persisted in distributed storage such that it can be queried efficiently and

assigned a PENDING status.

Step 3: A governance decision proposal is made on behalf of the requesting entity and the steps identified

above in the general workflow proceed until a decision is reached over the request.

Step 4: The completion of the governance decision process culminates in the final admin issuing a Verifiable

Credential as to whether the decision was to approve or reject. This stakeholder issues the VC and then

proceeds to updating the status of the membership record.

Step 5: The deciding admin updates the status of the membership record with either ACTIVE or REJECTED.

3.1.4 APIs

Operation name applyForMembership

Description API endpoint to submit Marketplace membership requests to

Input Parameters

Name Type Description

stakeholderDID String
DID that uniquely identifies the legal entity to be
onboarded

stakeholderClaimCertificate String

Certificate containing the claims that have been
attributed to the new stakeholder. For example,
which components of the 5GZORRO system they
have deployed

NotificationMethod NotificationMethod
Notification details that should be used to notify
the stakeholder of any governance decisions and
marketplace events as appropriate

Output Parameters

None None None

Notes

Operation name checkMembershipStatus

Description
API endpoint to allow a platform user to check the membership status of a
particular stakeholder

Input Parameters

Name Type Description

stakeholderDID String
DID that uniquely identifies the legal entity to be
checked

Output Parameters

MembershipStatus MembershipStatus
Status information regarding the progress of a
membership request or more generally the current
status of the DID owning stakeholder

Notes

Page 28 of 152

Operation name getMembers

Description API endpoint to retrieve a list of active Marketplace members

Input Parameters

Name Type Description

None

Output Parameters

List<Member> Member A list of members and their current status

Notes

Operation name revokeMembership

Description API endpoint to revoke Marketplace access for a stakeholder

Input Parameters

Name Type Description

stakeholderDiD String The DID of the stakeholder whose access is to be revoked

Output Parameters

None

Notes

Any requests made to this endpoint that are not for the requesting party, will be subject to a governance process.
Requests to revoke your own access would be accepted automatically.

Operation name proposeGovernanceDecision

Description
API endpoint to propose something to be decided according to the governance
model. Essentially the creation of a DID to track/identify the proposal and
associated status

Input Parameters

Name Type Description

actionType actionType ActionTypeEnum

Enum that captures the intended type of proposal

OnboardStakeholder|SlaDispute|NewLegalProseTem
plate|ArchiveLegalProseTemplate

actionParams ActionParams Parameters needed to settle a particular action type

Output Parameters

proposalIdentifier String DID that uniquely identifies the proposal

Notes:

Operation name getProposals

Description API endpoint to retrieve all submitted governance proposals

Input Parameters

Name Type Description

statusFilter Optional< ProposalStatusEnum>
Optional filter to filter proposals of a
particular status

actionTypeFilter Optional<ActionTypeEnum>
Optional filter to filter proposals of a
particular type

Page 29 of 152

Output Parameters

proposalDetails GovernanceProposalStatus
Object containing all pertinent proposal
information such as affected stakeholders
and status

Notes:

Operation name getGovernanceDecision

Description
API endpoint to retrieve a governance decision previously proposed and its
current status

Input Parameters

Name Type Description

proposalIdentifier String A DID that uniquely identifies a proposal

Output Parameters

proposalDetails GovernanceProposal
Object containing all pertinent proposal
information such as affected stakeholders
and status

Notes:

Operation name voteGovernanceDecision

Description
API endpoint to vote on a governance decision proposed in
proposeGovernanceDecision()

Input Parameters

Name Type Description

proposalIdentifier String A DID that uniquely identifies a proposal

accept Boolean Boolean to indicate an accept/reject decision

Output Parameters

None

Notes:

3.1.5 Information Models

 Notifications

Notification Method (abstract)

Parameter Type Description

type NotificationTypeEnum The kind of notification
Enum Values: EMAIL

Email Notification (extends NotificationMethod)

Parameter Type Description

type NotificationTypeEnum The kind of notification, final value of
EMAIL

distributionList List<string> List of email addresses to be notified
of marketplace events

Page 30 of 152

 MembershipStatus

Parameter Type Description

stakeholderId String DID of the stakeholder

status MembershipStatusEnum Current status of the stakeholder
membership
Enum Values:
PENDING|ACTIVE|REVOKED |
REJECTED

statusUpdated DateTime Date & Time of the last status change

 Member

Parameter Type Description

stakeholderId String DID of the stakeholder

legalName String The legal name of the stakeholder

address String Address of the stakeholder

 GovernanceProposal

Parameter Type Description

stakeholderId String DID of the stakeholder

status ProposalStatusEnum Current status of the proposal
Enum Values:
PROPOSED|APPROVED|REJECTED

actionType ActionTypeEnum The type of proposal

actionParams ActionParams The action parameters submitted
with the proposal

statusUpdated DateTime Date & Time of the last status change

 ActionParams

Parameter Type Description

entityIdentityId String The DID of the entity that is the
subject of the proposal Stakeholder,
SLA, Template

evidence String Any supporting evidence

3.2 Identity and Permissions Manager

The goal of Identity Management and Permissions Management is to supply the mechanisms required for
generating unique identifiers in the 5GZORRO ecosystem, recognising communicating endpoints, identifying
and authenticating entities, services and organizations, and authorising consumer requests to access
permissioned services and resources.

Page 31 of 152

In its present form, Identity Management is able to identify providers, consumers, services, resources,
organizations, etc., using Decentralised Identifiers (DIDs) associated with DID Documents. What is more, DIDs
can also be used for authentication through a Verifiable Credential linked to a DID Document. In the case
of Permissions Management, this allows setting up a secure layer that regulates the access to resources,
services, and delimited areas using a set of policies and rules. By means of policies and rules, each domain
can determine the amount of information exposed, the duration for which that information is shared, what
kind of information is shared, limiting resource capabilities, and so on. Therefore, each domain must define
its policies and rules based on its criteria such as improving security, usability, availability, and cost-efficiency.
In the end, Permissions Management attempts to prevent unauthorised access to services, resources, and
data, making access control enforcement as granular as possible.

3.2.1 Deployable Components

The DID Agent component is the core deployable component of 5GZORRO Identity and Permissions Manager
and it follows the main principles of DIF Cloud Agent design [24]. Each DID Agent holds a DLT Wallet according
to the DLT technology used, including secured storage to handle private keys. At this stage, there are
envisaged three main types of DID Agent components (see Figure 3-5):

• Admin (or Governance) DID Agent: it provides specific business logic to be used to issue non-
regulated Offers VCs on Providers request and to manage Governance Verifiable Credentials
including credentials about 5GZORRO stakeholders Marketplace membership. Admin DID Agents
have permissions to write in the Governance DLT.

• Regulator DID Agent: it extends the Admin DID Agent to provide additional business logic required
to issue Verifiable Credentials for 5G regulated resources notably 5G Spectrum resources. As an
extension of Admin DID Agents, Regulator DID Agents also have permissions to write in the
Governance DLT.

• Trading DID Agent: it provides specific business logic to manage Verifiable Credentials required to
support trustworthy trading of 5G Offers in 5GZORRO Marketplace. It is not expected the Trading
DID Agent will require to issue a Credential and it won't have to write in the Governance DLT. Trading
Agent DIDs will be registered in the Governance DLT via endorsers i.e., Admin DID Agents. This DID
Agent may play two roles:

1. Provider Trading Agent: it plays the role of the Verifiable Credential Offer Holder
2. Consumer Trading Agent: it plays the role of the Verifiable Credential Offer Verifier

DID Agents communicate among each other on top of P2P DID Comm protocols[28] to exchange Verifiable
Credentials or its presentations.

The communication between DID Agents and the DLT should be done via the DIF Universal Registrar and
Resolver in order to be as agnostic as possible of the DLT technology used. This interface is mainly used to
register and read 5GZORRO Public DIDs (i.e., Stakeholder DIDs and the Governance Board DID) and associated
DID Documents. For 5GZORRO implementation, the Hyperledger INDY Network Node has been selected.

The Admin DID Agent as well as the Regulator DID Agent should require an interface with the Governance
Manager component in order to apply the Governance Model adopted for 5GZORRO Marketplace.

The Admin DID Agent should also be used by the Smart Contracts DLT to handle credential verification
requests as demanded by the Smart Contract execution e.g., Offer validation as well as SLA violation
validation. This interface should be supported via a DID Oracle.

Page 32 of 152

Figure 3-5: Identity and Manager Deployable Components and their interfaces

3.2.2 Deployment scenarios

Identity and Permissions Manager DID Agents will be deployed in different 5GZORRO platforms according to
their types and the scenarios to be supported. Figure 3-6depicts a possible deployment topology to support
the offering and trading of a Regulated Resource in 5GZORRO Marketplace notably a Spectrum type of
Resource, where:

• The Admin DID Agent is deployed in the Governance platform and will be used to issue non-regulated
Offers VCs on Providers’ request. This Agent also manages any Governance Verifiable Credentials
including the ones related with Spectrum Offer SLA violations.

• The Regulator DID Agent is an extension of the Admin DID Agent regulated resources. Thus, it is also
deployed in the Governance platform operated by the Regulator to issue the Spectrum VC that will
be transferred to the Resource Provider with the rights to offer the Spectrum resource in the
Marketplace.

• The (Provider) Trading DID Agent is deployed in the Marketplace platform operated by the Spectrum
provider and will be the holder of the Spectrum VC issued by the regulator. The (Provider) Trading
DID Agent can also be deployed in the Cross-domain Analytics & Intelligence platform and in the
Zero-touch and Orchestration platform as soon as an Identity Hub [27] is deployed. But for
simplification purposes, each domain should only have one Trading DID Agent installed. In this case,

https://identity.foundation/working-groups/storage-compute.html

Page 33 of 152

any 5GZORRO component can interface with the Trading DID Agent by using its API (see Section
3.2.5).

• The (Consumer) Trading DID Agent is deployed in the Marketplace platform operated by the
Spectrum provider and will confirm the Provider has the rights over the offered Spectrum by verifying
the Spectrum VC issued by the regulator. As previously mentioned, the (consumer) Trading DID
Agent can also be deployed in the other two 5GZORRO platforms (Cross-domain Analytics &
Intelligence platform and in the Zero-touch and Orchestration platform).

Other 5GZORRO scenarios, including the ones not involving regulated resources, can be supported in similar
deployment environments.

Figure 3-6: Identity and Permission Agents Deployment Scenario

Page 34 of 152

3.2.3 Design Details

The Identity and Permissions manager component is developed on top of Hyperledger ARIES Cloud Agent
Python (ACA-Py) Controller OpenAPI as an ARIES Cloud Agent Controller containing the Business Logic
required by 5GZORRO DID Agents. The common Business Logic of 5GZORRO DID Agents is provided by the
DID Agent Core module that is reused by each 5GZORRO DID Agent as depicted in the Figure 3-7.

The ACA-Py framework is already designed to be DLT agnostic by deploying a pluggable Wallet for each DID
DLT Network. However, this is not scalable, and it won't be possible to support all DID DLT networks in every
Agent. To partially solve this problem, it is envisaged to use the DIF universal DID Resolver to read public
DIDs. This integration can be done at ACA-Py level or at 5GZORRO Core Agent Controller level (it is still to be
decided). However, the mechanism to write data to the ledger must be implemented within the Aries agent
to ensure full control over the private keys involved in the transactions. Thus, at this stage, the usage of DIF
Universal Registrar is not considered. A possible solution is to apply the protocol-on-the-fly [35] concept as
introduced by reTHINK project [36].

At this point, the DID Comm protocols currently supported by ACA-Py should be able to support the exchange
of 5GZORRO Credentials among the different DID Agents, including:

• The connection protocol (ARIES RFC 0160) [37] enables two agents to establish a connection through
a series of messages—an invitation, a connection request, and a connection response.

• The issue credential protocol (ARIES RFC 0453) [38] allows an agent to issue a credential to another
agent.

• The present proof protocol (ARIES RFC 0454) [39] enables an agent to request and receive a proof
from another agent.

Figure 3-7: DID Agent Design

https://rethink-project.github.io/specs/concepts/protofly/
https://rethink-project.github.io/
https://github.com/hyperledger/aries-cloudagent-python/blob/master/SupportedRFCs.md
https://github.com/hyperledger/aries-rfcs/tree/master/features/0160-connection-protocol
https://github.com/hyperledger/aries-rfcs/blob/master/features/0453-issue-credential-v2/README.md
https://github.com/hyperledger/aries-rfcs/tree/master/features/0454-present-proof-v2

Page 35 of 152

Nevertheless, if needed, ACA-Py pluggable protocols design should allow the usage of any potential
5GZORRO specific protocol.

The APIs implemented by 5GZORRO Agents are depicted in the figure below and they are described in Section
3.2.5.

Figure 3-8: APIs implemented by 5GZORRO Agents

The Core DID Agent provides the following major features:

• Client to interact with ACA-Py Controller REST API
• Handler to process and forward events coming from ACA-Py webhook
• Core Bootstrap Logic
• Business Logic to support the StakeholderVC Holder features
• Business Logic to support the GovernanceVC Verifier features

The Trading DID Agent provides the following major features:

• Bootstrap Logic for non-Administrators:
o Public DID is endorsed by an Admin Agent i.e., no write permission on the ledger
o DID Comm Connection Setup with all Admin Agents

• Business Logic to support the AgreementVC Holder features

The Provider Trading DID Agent provides the following major features:

• Business Logic to support the OfferVC Holder features

The Consumer Trading DID Agent provides the following major features:

• Business Logic to support the OfferVC Verifier features
• Business Logic to support the StakeholderVC Verifier features

The Admin DID Agent provides the following major features:

• Bootstrap Logic for Administrators:
o Create a trustee endorser DID on the ledger that has full write permission on the ledger
o Business logic to handle the required claims to register as a member of the Marketplace

Governance Board

Page 36 of 152

• Business Logic to support all required VC Issuer features
• Business Logic to support VC Verifier features as requested by the Smart Contracts execution (Offers

validation and SLA Violation validation).

3.2.4 Specific and Relevant Workflows

 Agent Bootstrap

The diagram below describes the main steps to be performed when a Trading Agent is executed for the 1st
time. The execution command should include at least (step 1):

• seed

• the DID of the Marketplace Governance Board

• a list of all platform service endpoints that can be used to certify the Stakeholder has all required
5GZORRO platforms successfully deployed (to be defined which service endpoints are mandatory per
stakeholder type)

The stakeholder DID is created and stored in the Wallet endorser (step 2) and then the Governance Board
DID is resolved to retrieve the list of existing Admin Agents and associated invitation URLs (steps 3-6). The
invitation URLs are used to establish a secured connection with some existing Admin Agents (steps 7 and 8)
and one of the connections is used to request the issue of a Stakeholder Credential (steps 9 and 10). Only
one connection is needed to issue the Stakeholder Credential and the connection with other Admin Agents
can be established as soon as the new Stakeholder is approved by the Governance Board. The Stakeholder
Credential is issued in case the Marketplace Governance Board approves the stakeholder as a new Member
of the Marketplace. As soon as the Trading Agent receives the Stakeholder Credential an Authentication
Presentation file is generated to be used in the authenticate() method.

Figure 3-9: Agent Bootstrap Workflow

Page 37 of 152

 DID Creation (e.g., Offer DID)

The diagram below (see Figure 3-10) describes the main steps to create a DID and associated Credentials by
using the Handler Agent API from the Identity and Permissions Manager component. The Handler Agent API
is implemented by the Trading Consumer Agent and by the Admin Agent and can be consumed by any
5GZORRO component to manage DIDs and associated Credentials from W3C Verifiable Credential Holder role
perspective. The creation of DID Offers by the Marketplace Catalogue is a major example of DID creation. The
creation of DIDs and associated Credential is performed by calling the 'createDID' function (step 1). A handler
endpoint is provided as an input parameter to receive DID events. As soon as the DID is created and locally
stored in the Agent Wallet with associated Service endpoints, the execution is returned with the new DID
(step 3). Then, the process to issue a DID credential containing requested claims is executed, where the
Holder Agent interacts with one of the available Admin Agents by using the DID Comm Issue Credential
protocol (steps 4 and 5). This process, including the registration of the credential definition in the Governance
DLT, is performed behind the scenes without requiring any additional interaction with the Holder Client (see
how credentials are issued by using the Issuer Agent API in Section 3.2.4.4). As soon as the Credential is
received by the Holder Agent, a DID Event is dispatched towards the Holder Handler to notify the DID is ready
to be used (step 6). Optionally, the Holder Client can retrieve the Invitation object that is required by any
potential 5GZORRO component interested to request the proof of claims associated to the new DID, for
example, the Marketplace Catalogue component operated by any interested 5GZORRO Product Consumer
(see how claims are verified by using the Verifier Agent API in Section 3.2.4.3).

Figure 3-10: DID Creation Workflow

 Consumer Verifies Claims from Provider Offer

Figure 3-11 describes the main steps to verify DID Credentials by using the Verifier Agent API from the Identity
and Permissions Manager component. The Verifier Agent API is implemented by the Trading Provider Agent
and by the Admin Agent and can be consumed by any 5GZORRO component to manage DIDs Credentials
from W3C Verifiable Credential Verifier role perspective. The verification of Product offer claims by a
5GZORRO Consumer is a major example of DID Credential verification. This verification is performed by the
Trading Consumer Agent (e.g., the Consumer Marketplace Portal) with a single call to the 'proofRequest'
function (step 1). The invitation object that is required to establish a secure connection with the Holder Agent
is provided as an input parameter, as well as the handler endpoint to receive Proof events. The proof_id is
returned (step 2) and the process to retrieve the Credential Presentation from the Trading Provider Agent
(Holder) is executed in step 3 by using the DID Comm Present Proof protocol. To be noted the invitation
object provided as input parameter in step 1 is required to establish a secure connection with the Provider
Agent (in case no previous connection is already established). As soon as the Credential Presentation is
received by the Trading Consumer Agent, the proof is processed by using the cryptographic verification
methods expressed in the Credential presentation (step 4) as well as checking the credential definition

Page 38 of 152

previously registered by the Admin Agent Issuer (step 5). When the verification is finished, a proof Event is
dispatched towards the Trading Consumer Handler to notify about the proof verification result: (proof is)
VERIFIED (step 6) or (proof has) FAILED (step 7).

Figure 3-11: Credential Verification Workflow

 Admin Agent Handles Credential Issue Requests

The diagram below (see Figure 3-12) describes the main steps to issue DID Credentials by using the Issuer
Agent API from the Identity and Permissions Manager component. The Issuer Agent API is implemented by
the Admin Agent and should be mostly consumed by the 5GZORRO Governance Manager component to
decide and control the issue of DIDs Credentials requested by other Holder Agents (e.g., Trading Provider
Agents) from W3C Verifiable Credential Issuer role perspective. The issue of Product Credential claims as
requested by a 5GZORRO Provider is a major example of DID Credential issue. Another relevant example is
the issue of Spectrum Credentials by the Regulator Agent.

Figure 3-12: Credential Issue Workflow

The issue of Credentials is usually initiated from a DID Comm Issue Credential Protocol message triggered by
the DID Creation process performed by a Holder Agent (see how DIDs are created by the Holder Agent in
Section 3.2.4.2) (step 1) and an Issue Event is dispatched towards the Admin Agent Handler (step 2). The
Admin Agent Handle should also be implemented by the 5GZORRO Governance Manager component and
decides on the credential issue request according to the adopted governance model.

Page 39 of 152

In case the request is approved, the Admin Agent Client will call the 'issueRequestedCredential' function (step
5) to issue the requested credential providing as input the request id extracted from the Issue Event received
in step 2. The credential is created with all cryptographic proof methods required to its verification (step 7),
its definition is registered in the Governance DLT (step 8) and then transferred to the requester, the Trading
Provider Agent (step 9).

If the request is declined, the Trading Provider Agent requester is informed as specified by the DID Comm
Issue Credential protocol (steps 10 and 11).

3.2.5 APIs

 Authentication

Operation name authenticate

Description To authenticate a stakeholder by using the Stakeholder Credential Authentication Presentation

Input Parameters

Name Type Description

id_token str The id_token that is included in the Stakeholder Credential
Authentication Presentation that is generated when the Agent is
executed for the 1st time or returned by the refresh function.

Output Parameters

response boolean Authentication result as a boolean, true if the authentication was
successful, false if failed

reason_code object If authentication fails, the reason should be provided here

Notes

In future versions, this API can evolve to be more aligned with SIOP DID spec

Operation name refresh

Description To refresh an id token

Input Parameters

Name Type Description

id_token str The id_token to be refreshed

refresh_token object The refresh_token that is included in the Stakeholder Credential
Authentication Presentation

Output Parameters

id_token str The refreshed new id_token

reason_code object If refresh fails the reason should be provided here

Notes

 Holder Agent

Operation name createDID

Description Request to create a private 5GZORRO DID and all associated Claims

Input Parameters

Name Type Description

type str
5GZORRO Subject type including "Resource", "Service", "Product",
"Agreement"

services object Services to be associated with the new DID

claims object List of claims to be associated with the new DID

https://identity.foundation/did-siop/

Page 40 of 152

handler str Handler endpoint to process DID status events dispatched by the Agent

Output Parameters

did str New DID created

state str State of the DID creation request

Notes

The request to create a new DID is asynchronous and the Handler endpoint has to be provided to receive events about
the DID. A request is submitted to an ADMIN Agent to issue associated credentials and may be subject to Governance
Board decision according to the adopted Governance Model.

Operation name readDIDStatus

Description Request to read DID status

Input Parameters

Name Type Description

did str The target DID

Output Parameters

state str The DID Status

Notes

Operation name readDID

Description Lists all or specific agent’s unique Decentralized Identifiers (DID) on the wallet

Input Parameters

Name Type Description

did str (Optional) Decentralized Identifier value to be read

Output Parameters

posture str The DID Status

services object Services included in the DID Document

credentials object Verified Credentials associated to the DID

Notes

To fetch a specific DID, use the optional did input parameter

Operation name removeDID

Description This method is utilised to remove a DID

Input Parameters

Name Type Description

did str String that identifies the subject to be removed

Output Parameters

State str Information on the completion status of the current action.

Metadata object Descriptive information about the action.

Notes

The remove of the DID will perform the revocation of all associated credentials.

Operation name updateDID

Description Request to update a private 5GZORRO DID and all associated Claims

Input Parameters

Name Type Description

did str String that identifies the subject to be updated

services object Services to be updated with the new DID

Page 41 of 152

claims object List of claims to be updated

Output Parameters

state str State of the DID update request

Notes

Operation name getInvitation

Description Retrieves Invitation Object to be used to connect with Agent for a specific DID

Input Parameters

Name Type Description

did str String that identifies the entity

Output Parameters

invitation object Invitation Object to be used to connect with Agent for the provided DID

Notes

For Offers DID, the catalogue should provide the invitation object to let interested Trading Consumers Agents to
connect with the Trading Provider Agent to retrieve the Credential presentation for verification purposes.

Operation name revokeCredential

Description This method is utilised to remove a credential

Input Parameters

Name Type Description

did str
String that identifies the subject associated to the credential to be
revoked

credential_id str String that identifies the credential to be revoked

Output Parameters

state str Information on the completion status of the current action.

metadata object Descriptive information about the action.

Notes

This is an asynchronous function where the result will be returned to the DID Handler in the credential topic.

 Holder Agent Handler API

The Holder Agent Handler API is implemented by components that are clients of the Holder Agent API.

Every time the Holder DID status is updated, a serialized DID Event JSON object is sent to the provided
Handler URL via POST requests. The full set of properties of the DID Event payload is listed below:

Parameter Type Description

did DID identifier of the subject which status was changed and reported with this object

state String The DID state value

description String Any optional textual description of the event

The possible DID state transitions are described in the state machine diagram provided below (see Figure
3-13):

Page 42 of 152

Figure 3-13: DID State Machine

 Issuer Admin Agent

Operation name issueRequestedCredential

Description Creates a credential requested by some Holder Agent

Input Parameters

Name Type Description

request_id str Identifier of the issue request

claims object List of claims to be included in the Credential

Output Parameters

cred_id str Credential identifier

state str State of the Credential sent

Notes

The request_id is extracted from the incoming issue request event processed by the Admin Handler.

Operation name declineIssueRequest

Description Declines the issue of a credential requested by some Holder Agent

Input Parameters

Name Type Description

request_id str Identifier of the requested issue which is declined

Output Parameters

N/A -- --

Notes

The request_id is extracted from the incoming issue request event processed by the Admin Handler.

Operation name revokeCredential

Description Revokes a credential issued by the agent

Page 43 of 152

Input Parameters

Name Type Description

cred_id str Credential Identifier

Output Parameters

N/A -- --

Notes

Operation name addHandler

Description Adds an Issuer Handler

Input Parameters

Name Type Description

handler str Webhook url

Output Parameters

N/A -- --

Notes

Operation name readCredentials

Description Lists Credentials stored on the agent

Input Parameters

Name Type Description

N/A -- --

Output Parameters

results object List of all credentials

Notes

Operation name readCredential

Description List Credential issued by the agent

Input Parameters

Name Type Description

cred_id str Credential Identifier

Output Parameters

credential object Requested Credential

created_at str Date of Credential creation

state str State of the Credential sent

Notes

The specified output fields are among the most important ones.

Operation name readDeclinedIssueRequests

Description Lists declined sent Credentials provided by the agent

Input Parameters

Page 44 of 152

Name Type Description

N/A -- --

Output Parameters

request_id str Issue Request Identifier

declined_at str Date of Credential rejection

state str State of the Credential rejection

Notes

The specified output fields are among the most important ones.

Operation name readDeclinedIssueRequest

Description Lists specific declined Credential provided by the agent

Input Parameters

Name Type Description

request_id str Credential Request Identifier

Output Parameters

claim str Credential Exchange Identifier

declined_at str Date of Credential rejection

state str State of the Credential rejection

Notes

The specified output fields are among the most important ones.

 Issuer Admin Agent Handler API

The Issuer Admin Agent Handler API is implemented by components that decide about issue request from
Holder Agents and which are clients of the Admin Agent API.

Different types of JSON records are sent to the provided Handler URL via POST requests.

When an event is dispatched, the record topic is appended as a path component to the URL, for example:

https://handler.host.example

becomes

https://handler.host.example/topic/issueRequest

when an issue request record is received from an Agent. A POST request is made to the resulting URL with
the body of the request comprised by a serialized JSON object. The full set of properties of the current set of
handler events payloads are listed below.

Issue Event (/issue)

Parameter Type Description

stakeholder_id DID Identifier of the stakeholder requesting the credential issue

subject_id DID Identifier of the subject to be associated with requested credential

request_id String
Identifier of the Issue request that will be used to issue the credential when
the "issueRequestedCredential" function is called.

claims Object List List of claims to be included in the requested credential

Revoke Event (/revoke)

https://handler.host.example/
https://handler.host.example/topic/issueRequest

Page 45 of 152

Parameter Type Description

credential_id DID Identifier of the credential to be revoked

 Verifier Agent

Operation name proofRequest

Description Requests the verification of DID claims

Input Parameters

Name Type Description

invitation object Invitation

claims object List of claims Id to be verified

handler str
Handler (callback) endpoint to process Proof status events dispatched by
the Agent

Output Parameters

proof_id str Identifier of the Proof request

state str State of the Proof Request

Notes

The request to verify DID claims is asynchronous and the Handler endpoint has to be provided to receive events about
the proof process. A secured connection with Holder Agent is established by using the Invitation Object which will be
used to request the credentials presentation. When the credentials presentation containing the claims proof are
received, the Verifier Agent will verify the claims proof registered in the Governance DLT.

Operation name readProofStatus

Description Request to read DID claims Proof status

Input Parameters

Name Type Description

proof_id str Identifies the Proof

Output Parameters

state str The Proof Status

Notes

Operation name readProofPresentation

Description Retrieves a Proof Presentation previously provided by a Holder Agent

Input Parameters

Name Type Description

proof_id str Proof Identifier

Output Parameters

state str State of the Proof Request

presentation object Object that contains the proof information

Notes

The specified output fields are among the most important ones.

 Verifier Agent Handler API

The Verifier Agent Handler API is implemented by components that request proofs about DID Credential
Claims and which are clients of the Verifier Agent API.

Every time the Proof status is updated, a serialized Proof Event JSON object is sent to the provided Handler
URL via POST requests. The full set of properties of the Proof Event payload is listed below:

Parameter Type Description

Page 46 of 152

proof_id String
Identifier of the proof request which status was
changed and reported with this object

state String The Proof state value

description String Any optional textual description of the event

The possible Proof state transitions are described in the state machine diagram provided below:

Figure 3-14: Proof State Machine

3.3 Legal Prose Management

Legal Prose Management is a software module deployed as part of the governance platform by admin
stakeholders and provides smart legal contract templating services to the 5GZORRO platform. Stakeholders
can propose new templates and updates, which are then subject to a consortium governance process prior
to being approved for use in the 5GZORRO marketplace.

Page 47 of 152

Templates comprise legal prose and a machine-readable model (Ricardian contract) that can be queried by
stakeholder marketplace platforms to build concrete SLAs, Agreements and Licence Terms. It is crucial that
templates also carry general (or specific where required) reference to applicable legal frameworks in order
to stand up to scrutiny should a civil legal dispute be raised. It is expected that the drafting of templates will
be a collaborative effort between legal and technical departments of a proposing stakeholder, and the
verification and approval processes involve the review of both technical and legal correctness.

3.3.1 5GZORRO Specific Enhancements

All agreements within the 5GZORRO ecosystem will be based on templates that have been subject to an
approval process by the 5GZORRO governance board. It is believed that this will give rise to better
transparency and consistency across the marketplace and efficiencies that result in the homogenous
approach to contract definition.

Marketplace traders will be able to utilise templates provided by the platform, but also propose new ones to
meet their needs. These templates can be developed by legal/technical roles and submitted to the 5GZORRO
ecosystem. Governance stakeholders would then partake in an approval process whereby each one reviews
and approves/rejects a proposed template. The approval of a template will be the result of this voting
process according to the agreed governance criteria e.g., all or majority approve or as emanating from the
applicable legal framework for example in the case of spectrum regulation and obligations.

Legal prose templates will be developed using the Accord Project [43], a framework for building smart legal
agreements. It marries legally enforceable prose with machine-readable data and business logic in a
technology-neutral manner. The architecture of Accord will be discussed in the next section, but the benefits
that it brings is the ability to define Ricardian contracts and automate their lifecycle and execution thanks to
embedded business logic. For example, an SLA agreement can have business logic embedded in it capable
of determining if it has been breached based on certain inputs (state and parameters).

A template will be assigned a DID and the issuance of verifiable claims during the approval process will give
rise to global cross-domain identifiability, authenticity and verifiable status of templates.

3.3.2 Design Details

Legal prose management plays a key part in establishing consistency, trust and automation across the
5GZORRO marketplace, with the following KPIs at the heart of its considered design:

▪ Ability for untrusted parties to negotiate, set-up and operate a new technical/commercial relationship via
a Smart Contract for 3rd-party resource leasing/allocation with associated SLA (KPI target: Smart Contract
for 3 or more untrusted parties)

▪ Implement/correlate technical service configurations and SLA monitoring interactions between multiple
parties (KPI target: SLA measurements and validation from at least 3 operators involved in a multi-party
service chain)

In order to meet the legal templating and automation requirements of the 5GZORRO platform it has been
decided to utilise the Accord Project; a set of projects and libraries belonging to the Linux Foundation for building
smart agreements and documents on a technology neutral platform. The following diagram illustrates the key
entities that comprise the module, which will also have dependencies on the DLT Governance Manager module
for providing governance services over the template repository. Definition and editing of such templates is
expected to be undertaken through the Governance Portal.

Page 48 of 152

Figure 3-15: Legal Prose Management Module Architecture

• API – a set of endpoints to expose the capabilities of the module, such as template proposal, querying
and archiving. These endpoints will be available cross-domain to non-admin stakeholders to service
their legal prose needs since the broader Governance platform is only deployed by governance admin
stakeholders.

• Template Manager – Functional entity that implements the logic of the module to ensure templates
and their status are managed in accordance with the agreed governance model and updates are
synchronised across all stakeholders belonging to the Governance Board.

 Accord Project for Smart Legal Contracts

Accord Project Templates are composed of three core elements: legal prose (natural language text), the data
model and executable business logic. The combination of these three elements culminates in a human-
readable and machine-readable smart agreement.

Figure 3-16: Accord Project Template Composition

Accord contracts can be thought of in two contexts, a) definition and b) execution. The definition takes
the form of defining natural text and subsequently generating a template to mirror the semantics of the
text. It can then be used to define a concrete instance of an agreement either passing a populated model
and template, or a legal document that precisely matches the format of the template to the template
parser.

Page 49 of 152

Figure 3-17: Accord Template & Contract definition

Step 1-2: Legal prose is broken into a template and template data model.

Step 3-4: A template parser can be generated to take a legal text (or a hydrated JSON model and a template)
to output a template model instance capturing the executable context of the text.

Step 6-7: Once you have a concrete instance of the template then you can invoke with requests that
represent events of significance to the clause from the outside world (e.g., post a measurement for an SLA,
for the clause to subsequently calculate if a violation has occurred). Execution can result in a response
corresponding with – for example – updated state, and a contract obligation (event) (e.g., SLA Violation).

Page 50 of 152

Figure 3-18: Example Accord contract execution context

 Accord for 5GZORRO prose templates

For 5GZORRO stakeholders to define templates that align with the chosen TM Forum Open API model
specifications [44][45][13], a set of models will be developed to mirror the key relevant information models
(see below) and packaged in a distributable NPM package. Using these, a template developer will be able to
model agreement templates to meet their needs whilst remaining aligned with the underlying expectation
that Agreements and SLAs conform to the TM Forum specification; naturally templates are subject to
verification of both the technical implementation and legal text prior to approval in any case.

Accord will be used to encapsulate the following categories of prose, where concerto models mirror the
noted TM Forum information models:

Prose Type TMF Spec Info Models

Agreement TMF651 Agreement

SLA TMF623 ServiceLevelAgreement, SLAViolation

License Terms TMF620 productOfferingPrice

 Contract logic (Ergo)

Ergo logic that encapsulates contract logic will be defined for SLAs such that a request can be posted to the
SLA and should this correspond with a violation of the terms, an event (obligation) will be raised. It is
intended that this logic is executed in a Trusted Execution Environment, in a serverless function fashion as
part of the SLA monitoring/analysis pipeline. Subscribers for emitted SLA violations (contract obligation
events) will be able to consume these events. For example, the Smart Contract Lifecycle Manager will
subsequently post the violation to the DLT for recording.

It was decided that contract business logic should be executed off-chain (i.e., not on the DLT) for efficiency.
Most notably the DLT only needs to be notified when a violation has occurred. Any inconsequential ‘good
performance’ can be recorded in the Data Lake if necessary.

3.3.3 Specific and Relevant Workflows

The services offered by Legal Prose Management contemplate the following supported workflows:

Page 51 of 152

 Publish Prose Template

Figure 3-19: Publish Prose Template Creation

It is expected that prose template definition - whether for agreements, SLAs or license terms - will be a task
that involves multiple user personas including business, legal and technical functions. The Governance Portal
will provide the necessary UI to build and submit Accord prose templates.

Step 1-2: Stakeholder defines Accord template according to their requirements (prose, model and ergo
logic) and submits the template to Legal Prose Management API endpoint exposed by a governance
administrator 5GZORRO platform for approval.
Step 3-5: A DID is created for identification purposes and the template stored in distributed storage with a
status of “PROPOSED”.
Step 6-7: A new proposal request is made to the governance manager on which each governance admin
will review and vote (via the Governance portal)2. See also Governance Manager for the details of this
process.
Step 8-9: The template status will be updated accordingly and if approved become available for use in the
marketplace by stakeholders.

 Archive Prose Template

The process of archiving a template will be much the same to the publishing of one. If the decision is to reject
the proposal to archive, then the template will continue to be available.

2 Some legal terminology related to spectrum trading, cannot be subject to a vote as it has to be in line with enforceable
legal frameworks

Page 52 of 152

3.3.4 APIs

Operation name: getLegalStatementTemplates

Description
API endpoint to retrieve a filtered list of legal prose templates to base an
Agreement, SLA or Licensing Term on

Input Parameters Type Description

 Criteria string
String to be used to filter the result set. E.g.,
“Spectrum” to retrieve templates relating to
spectrum agreements

Output Parameters Type Description

 templates List<LegalStatementTemplate>
A list of legal statements for the requester to
select from

Notes

Operation name: getLegalStatementTemplate

Description API endpoint to retrieve a single template by identifier

Input Parameters Type Description

 id String DID corresponding to a template

Output Parameters Type Description

 template LegalStatmentTemplate A legal statement matching the requested DID

Notes

Operation name: proposeNewLegalStatementTemplate

Description API endpoint to create a new template.

Input Parameters Type Description

 name String The name to assign to the template

 description String
A description of what the legal template
relates to

 template Blob
Accord archive file (.cto) that encapsulates the
parameterised specification of a Ricardian
contract

Output Parameters Type Description

 id String The DID of the newly created template

Notes

Templates are treated as immutable entities and are subject to a governance process.
A new template would be subject to a governance process before it becomes available for use. As such, it would be
in a 'PROPOSED" state

Operation name: removeLegalStatementTemplate

Description API endpoint to archive a template definition (soft delete)

Input Parameters Type Description

 id String DID of the template to be archived

Output Parameters Type Description

 N/A

Page 53 of 152

Notes

The removed template would continue to be available until a governance process has approved its removal.

Operation name: setLegalStatementTemplateApprovalStatus

Description API endpoint to update the status of a given template definition

Input Parameters Type Description

 id String DID of the template

 accept Boolean
Flag indicating whether the template action should be approved or
rejected

Output Parameters Type Description

Notes

If the template is in "PROPOSED" state then it will move to either "ACTIVE" or "REJECTED", or if in
"ARCHIVE_PROPOSED" state it will move to "ACTIVE" or "ARCHIVED" depending on the value of 'accept'.

3.3.5 Information Models

 LegalStatementTemplate

LegalStatmentTemplates will be used to model Agreement, SLA and Licence terms as well as the events
(Violations) that an agreement or SLA clause may emit.

Parameter Type Description
id String DID of the template
name String A short name that encapsulates the nature of the template
description String A description of the template's contents and intention
template Blob Accord archive (.cto) containing the legal prose template
created DateTime The date & time the template was created
status String String that denotes the current governance status of the template

PROPOSED | ACTIVE | REJECTED ARCHIVE_PROPOSED | ARCHIVED
statusUpdated DateTime The date & time the template status was updated
archived DateTime The date & time the template was archived

 Accord project CTO Archive

An accord archive comprises of the following elements that comprise a smart agreement template:

• Cicero Template - written in TemplateMark - a markdown format that extends CommonMark - to
write contract & clause templates. It provides markdown extensions to facilitate parameterisation
(and validation) of legal text based on the types defined in a Concerto model. The template contains
the parameterised, human-readable text and is backed by the machine-readable concerto model

• Concerto model - Concerto is an object-orientated modelling language that allows you to define the
model for a contract or clause, as well as any other required types, transactions and states.

• Ergo logic - Ergo is a domain-specific language to enable legal-tech developers to express contractual
logic in legal contracts. It will be used to define the logic associated with calculating, for example,
whether an SLA has been breached or a request is within the terms of a license agreement.

Page 54 of 152

3.4 Governance portal

Being a decentralised system, specific modules of 5GZORRO are governed by a set of stakeholders who have
the power to collectively decide on actions previously requested by another subset of stakeholders. These
specific actions are subject to manual approval and all actions are registered on-chain, whereby a transaction
properly signed by a stakeholder’s private key ensures authenticity of such request and/or approval. The
governance model dictating the different steps to be validated before approval (business logic) is coded as
smart contracts which are deployed on-chain. Thus, 5GZORRO solution automates the business processes
that should take place after a final decision has been made, i.e., multiple voters (those with voting power)
have collectively voted for or against the specific request. The governance model itself differs for each type
of request: one may require 3 out of 4 positive votes, all weighting the same (same voting power), while
others may, for instance, require at least 1 positive vote to go through – all of these are properly decided
collectively and off-chain, before being deployed on-chain.

Focused on the interaction with such governance structure and relevant software modules, the Governance
Portal dApp (decentralised Application) is a component of 5GOZRRO’s web GUI which shall support the
following user stories, whose actions should yield an expected behaviour (based on the interfaces and
underlying functionality of associated software modules).

It is clear, thus, that at the Governance Portal, a web GUI component will mostly interact with three other
major components: Identity and Permissions Manager (Section 3.2), Governance Manager (Section 3.1) and
the Legal Prose Repository (Section 3.2.53.3).

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 55 of 152

Table 3-2: Definition of Governance Portal’s User Stories

US id User Story
(US)

SW Module
(Interface)

API endpoint / RPC Input Outputs

R1 As a Stakeholder, I must be able
to request access to join
5GZORRO Governance Board (list
of Governance Admins)

DLT Governance
Manager

applyforMembership() stakeholderDID;
stakeholderClaimCertificate;
NotificationMethod
(5GZORRO IM)

VC (Governance Admin
onboarding)

R2 As a Stakeholder trying to join
the Marketplace, I must be able
to watch the status of my
onboarding process

DLT Governance
Manager

checkMembershipStatus()

stakeholderDID
MembershipStatus
(5GZORRO IM)

R3 As a Stakeholder I must be able to
revoke my access to the
Marketplace

DLT Governance
Manager

revokeMembership stakeholderDID

R4 As a Stakeholder, I must propose
the revoking of another
stakeholder’s access to the
Marketplace

DLT Governance
Manager

revokeMembership stakeholderDID

R5 As a Stakeholder, I must be able
to submit and propose new
Governance Decisions

DLT Governance

Manager

proposeGovernanceDecisi
on()

actionType
&
actionParams (5GZORRO IM)
(based on the selected action,
a dropdown form will be
displayed, with a different set
of inputs)

proposalIdentifierDID

R6 As a Governance Admin, I must
be able to vote on other
Stakeholders’ submitted
Governance Decisions

DLT Governance
Manager

voteGovernanceDecision() DID
Boolean

R7 As a Stakeholder, I must be able
to check the decision status of all
previously submitted proposals

DLT Governance
Manager

getGovernanceDecision() DID GovernanceProposalStatus
(5GZORRO IM)

Page 56 of 152

US id User Story
(US)

SW Module
(Interface)

API endpoint / RPC Input Outputs

R8 As a Stakeholder, I must be able
to query all previously submitted
proposals

DLT Governance
Manager

getProposals()

RL1 As a Stakeholder, I must be able
to compose and submit a new
Smart Legal Template

Legal Prose
Repository

proposeNewLegalStatem
entTemplate()

A regular form with:
Name,
Description
Template (file upload)

proposedTemplateDID

RL2 As a Stakeholder, I must be able
to retrieve all Smart Legal
Templates pertaining to SLAs

Legal Prose
Repository

getLegalStatementTempl
ates()

A text area where the
Stakeholder can input plain
text to be used as the criteria
parameter

List of
LegalStatementTemplate
(5GZORRO IM)

RL3 As a Stakeholder, I must be able
to get the details of a particular
Smart Legal Template

Legal Prose
Repository

getLegalStatementTempl
ate()

Template DID LegalStatementTemplate
(5GZORRO IM)

RL4 As a Governance Admin, I must
be able to approve and reject
previously submitted Smart Legal
Templates

Legal Prose
Repository

setLegalStatementTempla
teApprovalStatus()

A checkbox to indicate the
accept parameter of a
particular Template ID
(possibly listed as output of
getLegalStatementTemplate())

RL5 As a Governance Admin, I must
be able to propose the archival of
previously submitted Smart Legal
Templates

Legal Prose
Repository

removeLegalStatementTe
mplate()

Template ID

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 57 of 152

4 Trustworthy Marketplace applications

The stringent requirements and dynamic adaptation introduced by next-generation networks impose the
need to simplify the processes for procurement, deployment and management required for building 5G
flexible networks. Motivated by this reality, the 5GZORRO Marketplace Platform aims precisely to foster
multi-party collaboration for on-demand end-to-end service provisioning in dynamic 5G environments. This
section describes the main functionalities and components of the 5GZORRO Marketplace Platform.

In general terms, the Marketplace Platform enables the creation and acquisition of product offers that
represent a variety of exposed telco digital assets (i.e., resources and services). These offers include individual
resources such as infrastructure components (like cloud, edge, connectivity, wireless or cellular access) and
VNFs/CNFs; as well as composed bundles in the form of services/slices. To achieve this, the Marketplace
Platform provides the tools for the on-boarding of assets and offers composition; the sharing of offer updates
among participants; the on-demand order capture and agreement settlement for offer
purchase/consumption; and the continuous SLA management to ensure the fulfilment of agreed conditions.

Given the decentralized nature of the 5GZORRO ecosystem, the Marketplace Platform is the result of a mesh
of distributed marketplace instances like the one depicted in Figure 4-1. Specifically, the Marketplace
architecture needs to include the following components, whose main functionalities are next outlined, and
a more in-depth description is provided for each one of them later in this section.

Figure 4-1: Marketplace Platform Architecture

• Marketplace Portal: Storefront for offer composition, searching and selection to enable a business-
compliant and user-friendly offer design and display. Although a portal is provided for facilitating
user access to the platform, supported services are exposed for programmable interaction between
the Marketplace and other components of the 5GZORRO platform.

• Resource and Service (Offer) Catalogue: Portfolio of available (resource and service) digital assets
and corresponding (product) offers for 5GZORRO parties to offer, discover, request and consume
within the marketplace. This module defines how assets and products are modelled through use of
standard open APIs.

• Smart Contracts Lifecycle Manager: Key driver of how offers, SLAs and commercial agreements are
autonomously created and processed through smart contracts. Integration with different DLTs

Page 58 of 152

implementation is supported through use of ledger-specific drivers in order to certify transactions
ensuring transparency and trust among the participating stakeholders.

• Communication Fabric: Entity that takes care of the interoperation and communication between
modules of the Marketplace Platform. Inspired by the ZSM architecture [7], this component
facilitates the interaction among Marketplace services by playing both the roles of service consumer
and service producer.

4.1 Resource and Service Offer Catalogue

As part of the 5GZORRO Marketplace Platform, the Resource and Service Offer Catalogue is the module
responsible for collecting the 5G assets that are available to be traded among providers and customers. This
decentralized repository enables the processes of registering, browsing and ordering of product offers on-
demand across multiple parties acting as infrastructure providers, spectrum traders, VNF vendors and/or
service providers. As described later, these operations are modelled via TM Forum OpenAPIs, which allow
the different stakeholders to interact with the 5GZORRO marketplace and consume the exposed capabilities.

In 5GZORRO, the asset market is mainly supported by three different catalogues:

i. The resource catalogue contains the inventory of available resources (e.g., VNF/CNF, RAN elements,

Spectrum, edge/core resources).

ii. The service catalogue contains the inventory of available services (e.g., network services,

communication services/slices), which are defined as collections of resources.

iii. The product catalogue contains the inventory of available product offers, which add the business

terms (pricing, SLA, etc.) associated to the previous two asset categories.

Essentially, 5GZORRO stakeholders acting as offer providers consolidate resources and/or services by

abstracting the features and characteristics from their technical specification. To add the legal and business

considerations, these technical candidates are then wrapped into commercial product offers, stored in the

product catalogue and exposed to the market by means of smart contracts.

4.1.1 5GZORRO Specific enhancements

In 5GZORRO, the Resource and Service Offer Catalogue represents a multi-category repository, addressing

the needs in the entire lifecycle of different stakeholders’ asset portfolio. This module is responsible for

storing and managing the lifecycle of the different offers that are available to be traded in the marketplace,

while keeping a consistent and up to date record of available offers.

While resources and services are considered internal representations of provider’s assets, the use of product
offers as customer facing assets allows the inclusion of business terms such as corresponding pricing models
and service level agreements. Considering such information contributes to better represent the nature of
inter-party commercial relationships and provides key features for searching and retrieving offers based on
such criteria.

Once a resource or service is included as an item into a product offer, it becomes available to be traded. To
do so, the Catalogue interacts with the Marketplace DLT via the Smart Contract Lifecycle Manager for the
conformation of the corresponding smart contracts and posterior deployment into the ledger.

Additionally, the Resource and Service Offer Catalogue enables the automated discovery of available product

offers from different domains and service providers. It also contains the required logic to place a product

order, which includes the associated commercial agreement between providers and consumers.

Page 59 of 152

4.1.2 Design Details

The Resource and Service Offer Catalogue plays a fundamental role in the attainment of the following KPI:

• Automatically discover and “inventorize” various types of resources (i.e., compute, storage, network

at core, edge, far-edge), spectrum and services capabilities from different domains and service

providers (KPI target: distribution of resource updates and discovery in less than 10 mins).

In order to achieve the aforementioned functionalities, the internal architecture of the Resource and Service
Catalogue, shown in Figure 4-2, comprises the following main entities:

Figure 4-2: Resource and Service Catalogue Architecture

• Catalogue Northbound Interface (NBI): a set of TM Forum APIs is implemented to expose the module
capabilities regarding the lifecycle management of offers and orders. More details about these APIs
are depicted in the following subsections.

• Catalogue Manager: Functional block that implements the logic of the 5GZORRO Catalogue,
triggering internal interaction (read/write of database entries), triggering event notifications to
registered listeners and reacting to events published in the Communication Fabric regarding the
creation, update and removal of product offers.

• Catalogue Storage: Database where the available entities and dependencies associated to Resource,
Service and Product models are stored. The information model adopted is compliant with the TM
Forum SID and depicted in more details in following subsections.

• Smart Contract LCM Client: is the entity in charge of interacting with the Smart Contract Lifecycle
Manager (LCM), triggering API calls to conduct the deployment of smart contracts related to a
product offer that becomes available to be traded, as well as the update and removal of previously
deployed smart contracts.

4.1.3 Specific and relevant workflows

The services offered by the Catalogue contemplate the following supported workflows:

 On-boarding of (Resource and Service) Assets

Resource providers on-board and store in the Catalogue the technical description of available assets as shown

in Figure 4-3 for the case of a resource asset.

Page 60 of 152

Figure 4-3: On-boarding of resource asset workflow

Given the diverse nature of considered resources, the provided asset specification (see step 1 in Figure 4-3)

includes, but is not limited to, resource category (cloud, edge, spectrum, RAN, etc.), geographic location and

main characteristics that outline the offered capabilities. Stored asset information also contains a reference

to the corresponding management entity (i.e., Radio/Virtual Resource Manager) that exposes and controls

this resource within the 5GZORRO platform. Note that, in a similar way, assets can be off-boarded once they

are no longer available for trading.

 Composition and Publishing of Product Offers

Based on on-boarded assets, product offerings can be quickly assembled at the Catalogue following the

workflow shown in Figure 4-4.

Figure 4-4: Composition and publishing of product offers workflow

Step 1-2: In addition to the description of associated assets, pricing information is also required. Following a

consistent and standardized component definition, involved dependencies such as the product-offering price

(POP), can be created once and reused many times as part of new product offerings.

Step 3-4: During this stage, the SLA corresponding to the conceived product is also associated to the offer,

which is retrieved from the Smart Contract Lifecycle Manager, where an SLA manager sub-module is in charge

of conforming a variety of SLAs based on suitable contract templates.

Step 5: Once the product offer is assembled, the Catalogue interacts with the Smart Contract Lifecycle

Manager for the deployment and commitment into the ledger of the smart contract related to the new

product offering.

Page 61 of 152

Step 6: Likewise, the newly created product offer is ingested into the Smart Resource and Service Discovery

application for the execution of ML-based classification later explained in Section 5.5.

In the case of spectrum trading, the composition and publishing of product offer might need to be vetted

offline and may be subject to the approval of the Regulator in particular to safeguard from competition

distortion ex-ante.

 Retrieval of DLT-announced Product Offers

In order to keep a consistent and distributed “knowledge” about available marketplace offers, Catalogue

instances subscribe to DLT-events relating to offer registration/update/removal as depicted in Figure 4-5.

Figure 4-5: Retrieval of DLT-announced product offers workflow

Step 1-2: After such events are advertised (via the Communication Fabric), shared information is processed,

and every peer’s storage is updated.

Step 3: Considering for instance the case of new offers, data exchanged via the ledger is consumed for offer

composition and storage, leaving it available for lookup at each participant instance.

 Searching for Offers and Capture of Product Orders

Stakeholders acting as Marketplace customers (e.g., Communication Service Providers) will access the

Catalogue in order to find an offer suitable for their needs while, for instance, designing end-to-end services

on behalf of their vertical customers. To do so, the basic procedure is shown in Figure 4-6.

Figure 4-6: Searching for offers and capture of product orders workflow

Step 1-2: Advertised product offers can be searched by filtering them based on several criteria such as

category, provider, and geographic location, among others.

Step 3-4: After performing a selection, the customer places a request specifying the corresponding offer,

Page 62 of 152

which is relayed to the Smart Contract Lifecycle Manager for its translation as smart contract and

transmission towards the provider domain.

Step 5-7: This new record triggers a feasibility check at the Catalogue instance acting as offer provider, which

is delegated to the associated resource management entities, to confirm whether the corresponding product

(i.e., availability and sufficient capacity of the involved resources to support the product order) can still be

delivered.

Step 8: The result is then propagated back to the customer, which, if feasible, proceeds with the required

orchestration actions.

4.1.4 APIs

To facilitate the handling of digital assets, the Resource and Service Offer Catalogue is enhanced by the use
of OpenAPIs proposed by TM Forum regarding Catalogue Management APIs, for the lifecycle management
and browsing of catalogue offers, as well as Ordering API, for placing and/or cancelling an order.

The list of TM Forum APIs that are adopted for the implementation of the 5GZORRO Catalogue includes:

• Resource Catalog Management API (TMF634) [9]: provides the models, dependencies, lifecycle
management operations (i.e., create, update, delete, read and list) and event notification capabilities
to handle entities of the Resource catalogue.

• Service Catalog Management API (TMF633) [12]: provides the models, dependencies, lifecycle
management operations (i.e., create, update, delete, read and list) and event notification capabilities
to handle entities of the Service catalogue.

• Product Catalog Management API (TMF620) [13]: provides the models, dependencies, lifecycle
management operations (i.e., create, update, delete, read and list) and event notification capabilities
to handle entities of the Product catalogue.

• Product Order API (TMF622) [14]: provides the models, dependencies, lifecycle management
operations (i.e., create, update, delete, read and list) and event notification capabilities to issue (and
cancel) a product order regarding some advertised offer.

4.2 Smart Contracts Lifecycle Manager

This module comprises a set of services for managing agreements, SLAs, licensing terms and products both

within the domain of the provider and on the 5GZORRO marketplace DLT where appropriate. A component

of the broader module is a Smart Contract Lifecycle Service that manages the interactions and events

between service layer and DLT, utilising ledger-centric drivers to map abstract interfaces to DLT specific

functionalities. This enables the module to meet the needs of broader business-centric workflows, whilst

remaining agnostic to the DLT implementation, a key objective of the architecture. Agreement and SLA

encapsulate TM Forum API service specifications and related information models and utilise traditional local

storage as necessary to allow stakeholders to manage these foundational marketplace domain-level entities.

These are covered in detail in the sections that follow.

4.2.1 5GZORRO Specific Enhancements

In 5GZORRO the Smart Contract Lifecycle Manager acts as not only the gateway between the service layer
and the DLT layer but also exposes functionalities for managing agreement and SLA template definitions
within a stakeholder’s own domain. The central focus of this module is to manage lifecycle of 5GZORRO
entities deployed to the underlying ledger, expose the necessary abstract interfaces for managing these on
the DLT and publish associated lifecycle events for subscribing applications to consume.

Page 63 of 152

A core design principle is that the 5GZORRO marketplace remain agnostic to the DLT used, although there
would likely be a notion of approved ledgers. A “driver service” implements an abstract interface that defines
the key operations towards the DLT, with the service encapsulating the DLT-specific logic required to interact
with the ledger in question.

Catalogue Product Offer updates and their availability are disseminated to all trading stakeholder
marketplace nodes as a result of being posted to the DLT.

Product order requests are made to the Smart Contract Lifecycle Manager and subsequently the necessary
assets (agreements, SLAs and License Terms) are published to the DLT such that relevant parties can come
to agreement over the terms of the order, and subsequently enter into an immutable agreement. From
there the lifecycle of the agreement, SLAs and License terms and the events during their lifecycle are
managed by the lifecycle manager. SLA violations and license term updates are handled, validated (by smart
contract) and persisted to the DLT.

4.2.2 Design Details

The Smart Contract Lifecycle Manager Module is at the heart of the marketplace and key to attainment of

the following KPIs:

• Ability for untrusted parties to negotiate, set-up and operate a new technical/commercial

relationship via a Smart Contract for 3rd-party resource leasing/allocation with associated SLA (KPI

target: Smart Contract for 3 or more untrusted parties).

• Automatically discover and “inventorize” various types of resources (i.e., compute, storage, network
at core, edge, far-edge), spectrum and services capabilities from different domains and service
providers (KPI target: distribution of resource updates and discovery in less than 10 mins).

• Implement/correlate technical service configurations and SLA monitoring interactions between
multiple parties (KPI target: SLA measurements and validation from at least 3 operators involved in
a multi-party service chain).

In order to support the functionalities described above, the internal architecture of the Smart Contract
Lifecycle Module shown below comprises the following main entities:

Figure 4-7: Smart Contract Lifecycle Manager Module Architecture

Page 64 of 152

Agreement API: implementation of TM Forum APIs as defined in TMF651 – Agreement Management [44]

for providing CRUD capabilities for Agreement definitions that can be associated with product orders.

Agreements are created off-chain and only published to the DLT when a product order is made.

SLA Management API: implementation of TM Forum APIs as defined in TMF623 – SLA Management [45] for

providing CRUD capabilities for SLA definitions that can be associated with product orders. SLAs are created

off-chain and only published to the DLT when a product order is made.

Product Order API: partial interface implementation of TM Forum APIs as defined in TMF622 – Product Order

API [14], that exposes capabilities for a consumer to purchase a product offer advertised in the catalogue.

Product orders are subsequently published to the DLT and their lifecycle is managed by the Smart Contract

Lifecycle Manager.

Product Offering API: partial interface implementation of TM Forum APIs as defined in TMF620 – Product

catalogue management [13], that exposes CRUD capabilities pertaining to product offerings that can be used

by providers to publish and manage the products they wish to offer in the catalogue. Product offers are

subsequently published to the DLT and their lifecycle is managed by the Smart Contract Lifecycle Manager

Smart Contract Lifecycle Manager: functional entity that implements the core logic of this module. It is

responsible for managing the read/write of off-chain database entries, publishing and subscribing to lifecycle

events to/from the Communication Fabric for domain entities managed on the DLT and for providing the

mapping capabilities from service layer to DLT using appropriate drivers.

Smart Contract Lifecycle Manager Storage: Database where Agreement and SLA entities are persisted and

queried from to support their inclusion in product offering and product order definitions.

DLT Drivers (Corda Driver Service): for the 5GZORRO marketplace to remain DLT agnostic, an abstract

interface is defined that encapsulates the high-level functions towards the DLT. A driver service

implementation of this interface for a given DLT, encapsulates all DLT-specific logic to realise the underlying

implementation. For 5GZORRO, an R3 Corda Driver service will be developed, thus integrating the

marketplace with a CORDA DLT implementation.

Distributed Ledgers (Corda DLT): as previously stated, the 5GZORRO is to remain agnostic to the DLT, but at

this time an R3 Corda implementation will be developed.

4.2.3 Specific and relevant workflows

 Agreement definition

Resource providers create Agreement definitions based on templates defined in the Legal Prose
Management Repository such that they can then be incorporated into product offerings / orders and
published in the catalogue. The creation of Agreements will incorporate relevant parties and metrics, and be
populated from models defined in legal prose templates with a reference to the template on which the
Agreement is based upon, tying the technical definition to the human-readable prose equivalent.

 SLA definition

Resource providers create SLA definitions based on templates defined in the Legal Prose Management
Repository such that they can then be incorporated into product offerings / orders and published in the
catalogue. The creation of SLAs will incorporate relevant parties and metrics, and be populated from models

Page 65 of 152

defined in legal prose templates with a reference to the template on which the SLA is based upon, tying the
technical definition to the human-readable prose equivalent.

 Publish a product offering

Having assembled a product offer, the Catalogue publishes the offer to the marketplace DLT using the Smart
Contract Lifecycle Manager. This in turn leverages a DLT driver to translate the request into DLT-specific
implementation to realise the operation. The culmination of these operations is the verification and
submission of the offer transaction to the ledger and the propagation of the catalogue update to all
participants such that it can be reflected in their own copy of the catalogue. Where necessary – such as when
ensuring Spectrum rights – the appropriate verifiable credential is supplied for it to be verified by the DID
Oracle; failure resulting in the transaction not being signed by the oracle and the ledger update rejected. The
figure below illustrates the steps involved.

Figure 4-8: Publish a Product Offer

 Product order (create agreement)

On discovering product offers that meet the needs of a consumer, they must compose a product order and
submit it to the catalogue. In turn this order is submitted to the Smart Contract Lifecycle manager to be
published to the DLT; this marks the beginning of the lifecycle of the order. As per the TM forum information
model specified in TMF622, the order comprises of metadata, resource or service offers, SLAs and

Page 66 of 152

agreements. The publication of the order to the DLT makes the order state available to both consumer and
provider and prompts the provider to perform checks as to the viability of servicing the order. If the provider
has the capacity, they can choose to accept the order and the process of provisioning can begin. If they are
unable to service the order or do not agree to the terms presented, they are able to reject the order. If the
order comprises a Spectrum offer, the regulator should be named as a related party in the order and as such
would have visibility of the order by being noted as an observer of the transaction, but also have rights
granted to terminate the order at any point in its lifecycle should it be determined that the consumer is not
permitted to hold the spectrum allocation. The workflow steps are illustrated in the figure below:

Figure 4-9: Publish a Product Order Agreement

Step 1: A request is made to the Lifecyle manager to create a product order.

Step 2-3: Lifecycle Manager begins the Corda createProductOrder flow by utilising the DLT driver.

Step 4: Transaction is committed to the ledger and is signed by provider and consumer.

Step 5-7: Provider is notified of the new order.

Page 67 of 152

Step 8-10: Having validated the order and their ability to service it, the provider initiates the accept or
reject flow via the Smart Contract Lifecycle Manager.

Step 11-14: The status of the order is updated on the DLT and the consumer is notified.

Step 15-17: Having provisioned the appropriate resources for the order, either the provider or consumer
can give acknowledgement to the Smart Contract Lifecycle Manager (via the Catalogue*) to initiate the
provisioned flow.

Step 18-19: Resource proxy oracle tests the endpoints for each resource offer in the order and signs the
transaction (tx) as successful.

Step 21-25: Successful oracle verification leads to submission of the status update to the ledger and the
agreement becomes active. Consumer is notified.

Step 25-28: If endpoint testing fails, the transaction is rejected, and the provider is notified.

* The current thinking is that the Catalogue will act as a proxy between Core Platform services such as
Intelligent Network Slice & Service Manager, subscribing to events raised by these components and
initiating the appropriate interaction with the Smart Contract Lifecycle Manager.

 SLA Lifecycle Management

The Smart Contact Lifecycle Manager will monitor agreements and whenever a significant update occurs (e.g.,
creation or termination), events will be published for subscribing applications to react accordingly. In this
case the change of an SLA’s state should prompt the monitoring manager to react accordingly to configure
the necessary monitoring and analytics to assess the SLAs performance. The below workflow depicts this
monitoring process and the instantiation/teardown of monitoring pipelines by the monitoring manager.

Figure 4-10: SLA Lifecycle Management

Step 1: The Monitoring Manager registers a listener for SLA Lifecycle events (Created, Activated, Updated,
Terminated).

Step 2: Lifecycle Manager monitors Smart Contract agreements for changes to agreements and related SLAs.

Step 3: Lifecycle Manager publishes related events as contract changes occur (e.g., new SLA, updated SLA).

Step 4: Monitoring Manager receives changes to SLAs that are to be monitored.

Step 5-6: Monitoring Manager retrieves associated SLA template, which contains the executable contract
logic.

Page 68 of 152

Step 7: Monitoring Manager configures the Monitoring Aggregator according to the SLAs it is required to
monitor.

Note: Create/update should configure the Monitoring Aggregator according to the SLA type, whereas
termination should teardown the aggregator.

Once SLAs become active and the monitoring/analytics pipeline has been configured, monitoring data is
pushed to the Data Lake for analysis. The workflow below illustrates the steps involved and the temporal
assessment of SLA performance.

Steps 1-2: Resource Provider monitors resources and publishes metrics to Service & Resource Monitoring.

Step 3-4: Monitoring data is aggregated and published to the Data Lake.

Step 5: Analysis is performed on the aggregated data temporally using a function derived from the Legal
Prose Template relating to the SLA in order to detect violations.

Step 6: If an SLA violation is detected and event is emitted by the analysis function and the event is published
to the communication fabric for subscribing apps to consume. Included in the payload is a hash of evidence
& VC for the monitoring service (i.e., proof that it is permitted to submit a violation for the SLA).

Steps 7-9: Smart Contract Lifecycle Manager consumes the Violation Event and records the violation on the
DLT with the Identity Oracle attesting to the fact that the VC is valid.

Step 10-14: If the VC is valid the oracle and provider sign the transaction and it is synced with the consumer
as an observer of the transaction. The state change is emitted to the Smart Contract Lifecycle manager of
both provider and consumer.

Step 15: If the VC is invalid, i.e., unauthorised to update the Smart Contract, then the transaction is
rejected.

Steps 16-17: Smart Contract Lifecycle Manager publishes the DLT event for marketplace subscribers (both
in the consumer and provider domains).

Steps 18-19: When the agreement is terminated, the Smart Contract Lifecycle Manager publishes the DLT
event for marketplace subscribers (both in the consumer and provider domains).

Whilst the 5GZORRO exemplary implementation does not consider an impartial stakeholder to perform
trusted monitoring, it is envisaged that this role would be identified and provide the monitoring capability
rather than the provider depicted in the workflow above. The solution remains agnostic to this however and
would only require the third party’s monitoring service to be identified in the product order in place of the
providers. Consequently, it would be the mutually trusted third party (having deployed 5GZORRO
components) that would monitor, measure and record violations pertaining to SLAs. For the purposes of
5GZORRO, the issue of trust around SLA monitoring and measurement is somewhat mitigated by the
execution of rules within a trusted execution environment, and through the governance model, whereby a
consumer can raise a dispute should they feel that a provider has acted dishonestly.

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 69 of 152

Figure 4-11: Monitoring and SLA Compliance

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 70 of 152

4.2.4 APIs

To facilitate the management of Agreement and SLA definitions and product offerings and orders
underpinned by the DLT, this module offers APIs for these management activities and the associated lifecycle
events.

The following TM Forum APIs will be adopted for the implementation:

• Product Catalog Management API (TMF620): provides the models, dependencies, lifecycle
management operations (i.e., create, update, delete, read and list) and event notification capabilities
to handle Product Offers

• Product Order API (TMF622): provides the models, dependencies, lifecycle management operations
(i.e., create, update, delete, read and list) and event notification capabilities to issue (and cancel) a
product order regarding some advertised offer

• Agreement Management API (TMF651): provides the models, dependencies, lifecycle management
operations (i.e., create, update, delete, read and list) and event notification capabilities to manage
Agreement entities

• SLA Management API (TMF623): provides the models, dependencies, lifecycle management
operations (i.e., create, update, delete, read and list) and event notification capabilities to handle
entities pertaining to SLA management

 DLT Driver API definition

An abstract interface implemented by DLT-specific drivers to provide the integration point between the

Smart Contract Lifecycle Manager and DLTs will be developed. Below is the definition of the interface it will

expose:

Product Offerings

Operation name: publishProductOffer

Description API Endpoint for a provider to publish a new product offer to the DLT

Input Parameters Type Description

 offer ProductOffering
TM Forum model capturing the product offering
specification

 didInvitations
Map<string, Invitation>

Mapping of DID to Invitation Objects (see Identity
Management) for any DIDs that may require
credential verification

 verifiableCredentials
Optional<VerifiableCredentia
l>

Optionally include applicable verifiable
credentials for the offer. E.g., Spectrum rights VC
required to successfully publish a spectrum offer

Output Parameters Type Description

 N/A

Notes

Operation name: updateProductOffer

Description
API Endpoint for a provider to update one of their product offerings on the DLT
and subsequently be announced to all marketplace trading stakeholders

Input Parameters Type Description

 offer ProductOffering
TM Forum model capturing the updated product offering
specification

Page 71 of 152

Output Parameters Type Description

 N/A

Notes

Operation name: removeProductOffer

Description
API Endpoint for a provider to retire a product offering from the marketplace
catalogue by marking it as such on the DLT

Input Parameters Type Description

 offerId String DID of the product offering

Output Parameters Type Description

Notes

Product Orders

Operation name: getProductOrder

Description
API Endpoint for consumer or provider to get the details of a specific product
order

Input Parameters Type Description

 productOrderId String DID of the product order

Output Parameters Type Description

 productOrder ProductOrder TM Forum ProductOrder object

Notes

Operation name: getProductOrders

Description
API Endpoint for a provider or consumer to obtain a list of their – active – product
orders (agreements)

Input Parameters Type Description

 activeOnly Boolean

Output Parameters Type Description

 productOrders List<ProductOrder> List of TM Forum ProductOrder objects

Notes

Operation name: createProductOrder

Description
API Endpoint for a consumer to create a new product order and begin the
associated lifecycle

Input Parameters Type Description

 productOrder ProductOrder
TM Forum model capturing the product order
specification

Page 72 of 152

 didInvitations Map<string,Invitation>
Mapping of DID to Invitation Objects (see Identity
Management) for any DIDs that may require credential
verification

Output Parameters Type Description

 N/A

Notes

Operation name: acceptProductOrder

Description
API Endpoint for a provider to accept a product order request and mark it as such
on the DLT

Input Parameters Type Description

 productOrderId String DID of the product order

Output Parameters Type Description

 N/A

Notes

Operation name: rejectProductOrder

Description API Endpoint for a provider to reject a product order request

Input Parameters Type Description

 productOrderId String DID of the product order

 rejectionReason String The reason for rejecting the order e.g., no capacity

Output Parameters Type Description

 N/A

Notes

Operation name: proposeUpdateProductOrder

Description
API Endpoint for a provider or consumer to submit a product order update
proposal

Input Parameters Type Description

 productOrderId String DID of the product order

 productOrder ProductOrder
TM Forum model capturing the updated product order
specification

Output Parameters Type Description

 N/A

Notes

Operation name: acceptProposedProductOrderChanges

Description API Endpoint for a counterparty to accept a proposed change to a product order

Input Parameters Type Description

 productOrderId String DID of the product order to accept proposed changes on

Page 73 of 152

Output Parameters Type Description

 N/A

Notes

Operation name: rejectProposedProductOrderChanges

Description API Endpoint for a counterparty to reject a proposed change to a product order

Input Parameters Type Description

 productOrderId String DID of the product order to reject proposed changes

Output Parameters Type Description

 N/A

Notes

Operation name: terminateProductOrder

Description API Endpoint for a consumer or provider to terminate an existing product order

Input Parameters Type Description

 productOrderId String DID of the product order to terminate

Output Parameters Type Description

Notes

Operation name: markProductOrderProvisioned

Description
API Endpoint to update the DLT once all product offerings on an order have been
provisioned and as such, the agreement is then live

Input Parameters Type Description

 productOrderId String DID of the product order to update

Output Parameters Type Description

Notes

SLA Violation

Operation name: createSLAViolation

Description
API Endpoint for a consumer to post violations received from the approved
monitoring service

Input Parameters Type Description

 productOrderId String DID of the product order the violation relates to

Page 74 of 152

 violation SLAViolation
A SIGNED (by the generating monitoring service) TM Forum
SLAViolation model to support provenance of the violation
payload

 monitoringServiceVC VerifiableClaim
Claim presentation to allow a governance Oracle to verify
that the monitoring service does indeed have permission to
post this violation to the ledger

Output Parameters Type Description

 N/A

Notes

License Terms

Operation name: setProvisionedQty

Description
API Endpoint for a consumer to update the DLT with any scaling action such that
they are reflected on ledger, but also verified as being within the terms of the
contract

Input Parameters Type Description

 productOrderId String DID of the product order

 productOfferingId String DID of the product offering

 newQty Number The number of instances/users required

Output Parameters Type Description

 N/A

Notes

4.3 Marketplace portal

This portal is the module that comprises the unique 5GZORRO’s web GUI: Governance (Section 3.4) and
Marketplace portal. As mentioned in D2.2, this component allows 5GZORRO’s stakeholders to submit and
browse the different offers to be available in the marketplace - which, in turn, is managed by the Catalogue
Manager component - and the placing and reviewing of related orders, having in mind a particular set of
business terms. For this reason, when allowing stakeholders to onboard of such products into the Catalogue,
the GUI must also interface directly with both the Resource and Service Offer Catalogue (Section 4.1) and, in
a later stage, the Smart Contract Lifecycle Manager (Section 4.2) for subsequent deployment of said offers
to the DLT. Furthermore, this GUI interacts also directly with the Smart Resource and Service Discovery
(Section 5.5), allowing stakeholders to intelligently query and retrieve catalogue data and metrics,
abstracting the underlying complex ML-based filtering and ordering.

4.3.1 Design Details

Following the same approach as in Governance portal (Section 3.4), the table below indicates the User Stories

that shall drive the implementation of this 5GZORRO module (Web GUI).

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 75 of 152

Table 4-1: Definition of Marketplace Portal’s User Stories

US
id

User Story (US) SW Module & Interface/Operation
(Interface)

Inputs and notes Outputs

US 1 As a Resource Consumer
(Communication Service Provider),
I must be able to browse the most
suitable available offerings, based
on specific criteria

Module Smart Resource and Service
Discovery application

Discovery Criteria
(category, location, price, preference for
provider)

List of Offers

Operation discoverOffers()

US 2 As a Resource Provider, I must be
able to on-board resources into the
Catalogue

Module

Resource and Service Offer
Catalogue (Catalogue
Manager)

Type of resources to be selected before
passing correct parameters:

•InformationResource,
•SpectrumResource,
•PhysicalResource,
•LogicalResource,
•Virtual Resource,
•NetworkFunction

The onboarding of these resources should
follow a “wizard” type of interface, guiding the
user through different forms depending on
selected items. More details on the
parameters to be filled can be found in Section
6.2.1.

Operation Create Resource method
exposed by the Catalogue
Manager

US3 As a Service Provider, I must be able
to on-board services into the
Catalogue

Module Resource and Service Offer
Catalogue (Catalogue
Manager)

Same procedure as the onboarding of a
resource (US 1), whose parameters (fields of a
form) will follow the specs found in the
Information Model of Section 6.2.2.

Operation Create Service method
exposed by the Catalogue
Manager

Page 76 of 152

US
id

User Story (US) SW Module & Interface/Operation
(Interface)

Inputs and notes Outputs

US4 As a Resource and Service
Consumer I must be able to browse
all active and inactive Product
Orders

Module Resource and Service Offer
Catalogue (Catalogue
Manager)

Boolean (active or not active) List of
productOrder

Operation getProductOrders()

US 5 As a Resource and Service
Consumer I must place an order on
a particular Product Offering

Module Resource and Service Offer
Catalogue (Catalogue
Manager)

productOrder
(5GZORRO IM)

list of DIDs with mapping to Invitation Objects
for all DIDs bundled into a Product

(more info in Section 4.2.4.1)

List of verifiableCredentials

Operation createProductOrder()

US6 As a Resource and Service Provider
I must compose the offering of a
Product Offering and publish it to
the Catalogue

Module Resource and Service Offer
Catalogue (Catalogue
Manager)

ProductOffering
(5GZORRO IM)

list of DIDs with mapping to Invitation Objects
for all DIDs bundled into a Product
(more info in Section 4.2.4.1)

Operation publishProductOffer()

US 7 As a Resource and Service Provider,
I must be able to attach the license
terms (pricing), agreements and
SLA to a particular Product Offer

Module SLAs and Agreement API
(provided by SC Lifecyle
Manager Module - see
Section 4.2.2)

When creating a ProductOffer (US6), it will
only be available for consumption in the
Marketplace once all required parameters are
specified (business-level). For this, it is
expected that the user:
(i) selects the product
(ii) attaches and fills the Agreement and SLA
templates previously registered through

Governance Portal (section3.4)
(iii) update productOffer

Updated
ProductOffer

Operation Retrieval of Agreement and
SLAs from respective APIs

(see Section 4.2.2)

Page 77 of 152

US
id

User Story (US) SW Module & Interface/Operation
(Interface)

Inputs and notes Outputs

updateProductOffer()
method from the SC Lifecycle
Manager module

US 8 As a Regulator, I must be able to
browse all submitted Product
Orders which reference a
Product Offering where
spectrum is included as a
resource

Module SC Lifecycle Manager Use the allowed parameters of this method to
filter out ProductOrders referencing a
ProductOffer which has spectrum as resources

List of
ProductOrders

Operation getProductOrders()

US9 As a Resource and Service
Provider, I must be able to
update a previously published
ProductOffer

Module SC Lifecycle Manager Modified ProductOffering Updated
ProductOffer

Operation updateProductOffer()

US10 As a Regulator, I must be able to
govern (allow or reject) the
orders placed by Consumers,
whose Product Offering (by
Provider) contains the spectrum
as an asset

Module If a Product Offer has a resource type of
spectrum, the acceptance of a subsequent
Product Order is subject to approval from not
only the Provider, but also the Regulator.

Operation

US11 As a Provider, I must be able to
reject a Product Order Request

Module Resource and Service Offer
Catalogue (Catalogue
Manager)

productOrderId,
rejectionReason

Operation acceptProductOrder()
or
rejectProductOrder()

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 78 of 152

As some Information Models are quite extensive, it is foreseeable that, in some cases, the Stakeholder

interacting with such GUI may have to copy and paste full-blown JSON representation of data, providing its

complexity to fill each parameter manually. For these cases, a JSON format validator will be added to the

web GUI, for a smoother user experience (by detecting if malformatted, before allowing the publishing of

such data).

4.3.2 5GZORRO Specific Enhancements

While other web portals facilitate already the onboarding of different services into a catalogue (mainly VNFs
or general compute, storage and RAM resources), 5GZORRO’s novelty lies in the fact that (i) this model is
extended to other resources such as spectrum (providing the system’s ability to track and monitor its usage
across different RAN elements), (ii) there is a real marketplace where multi-party business interactions can
happen with strong support of SLA enforcement leveraging DLT, (iii) by extending this marketplace following
a Governance model which is clear and transparent for all stakeholders involved (acceptance of placed
Orders under specific business terms, allowing usage of spectrum by a real licensed Regulator, etc.) and,
finally, (iv) the alignment with other initiatives such as TMForum’s set of APIs for a Telecom Marketplace, by
enhancing it and extending it to a user-friendly web application.

Page 79 of 152

5 Cross-domain Analytics & Intelligence for AIOps

The AIOps paradigm revolves around a concept of operational data and involves smart and efficient data
collection (capture, monitoring, telemetry), governed and intelligently stored over time, and advanced data
analytics (statistics, machine learning, artificial intelligence) to provide valuable insights actionable in the
context of a particular use case.

AIOps products and services can be divided into various categories. Gartner's [4] three aspects of AIOps
platforms are:

1. Data ingestion and handling (Observe)

2. Machine Learning (ML) analytics (Engage)

3. Remediation (Act)

We use the term Data Lake to include the Data Store and the surrounding tools to perform these operations.

5.1 Baseline Data Lake Platform

Many players in the Cloud arena provide AIOps and Data Lake services, including Amazon, Google, Microsoft,
Oracle, Cloudera, Zaloni, Teradata, RedHat, and others. Many of these systems are proprietary. Open Data
Hub (ODH), supported by RedHat, is an open-source project that provides open-source AI tools for running
large and distributed AI workloads on OpenShift Container Platform (essentially Kubernetes). The Open Data
Hub project provides open-source tools for data storage, distributed AI and Machine Learning (ML)
workflows and a Notebook development environment.

The 5GZORRO Data Lake will be modelled upon the components of Open Data Hub, inheriting all the usual
services.

We envision the Data Lake to provide the following basic services.

• Data Storage; e.g., S3-compliant Object Storage such as Ceph or Minio, databases, etc

• Messaging / streaming capability; e.g., Kafka

• Metadata Services;

• Analytics tools; e.g., Spark, TensorFlow, Kubeflow

• Runtime: Docker

o Container orchestrator: Kubernetes

o Serverless; e.g., Knative, FaaS, Tekton

• Data Transformation services; e.g., Hadoop, Spark

• Workflow management tools, e.g., Argo

• Event mechanisms, e.g., Argo Events, Knative Events

5.1.1 Relevant Entities and Modules

We start with the following basic components to support the workflows needed for 5GZORRO.

• Runtime (Docker containers, Kubernetes)

• Messaging / streaming capability (Kafka)

• Data Store with S3-compliant interface (e.g., Ceph, Minio)

https://aws.amazon.com/lake-formation/
https://cloud.google.com/solutions/build-a-data-lake-on-gcp
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/
https://blogs.oracle.com/bigdata/data-lake-solution-patterns-use-cases
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.zaloni.com/
https://www.teradata.com/Cloud/Data-Lake
https://opendatahub.io/
https://opendatahub.io/
https://opendatahub.io/

Page 80 of 152

• Pipelines (Argo)

• Data Transformation services (e.g., Hadoop, Spark)

Kubernetes is an open-source system for automating deployment, scaling, and management of containerized

applications.

Apache Kafka is a distributed streaming platform for publishing and subscribing records as well as storing

and processing streams of records.

Ceph is an open-source software storage platform which implements object storage on a single distributed

computer cluster. Ceph delivers object, block, and file storage in one unified system.

Argo Workflows is an open-source container-native workflow engine for orchestrating parallel jobs on

Kubernetes.

The Apache Hadoop software library is a framework that allows for the distributed processing of large data

sets across clusters of computers using simple programming models.

Apache Spark™ is a unified analytics engine for large-scale data processing.

As needed, additional components will be added.

Messages to Data Lake must be signed to be able to detect authenticity and corruption of data. This is

accomplished by adding a metadata field that includes an encrypted hash of data content, using the private

key of the sender for the encryption and the public key of the claimed sender for verification.

 Running Services in the Data Lake

We refer to the data processing or analytic functionality as a service.

Using the services of a Data Lake usually includes several coordinating services, which can be thought of as a
pipeline. The general cycle of using a Data Lake is:

1. gather data;

2. pre-process the data;

3. register the data in a catalogue;

4. perform some analysis on the data to obtain insights;

5. perform some action based on the result of the analysis.

As a specific example:

1. gather monitoring data of a computer cluster;

2. train an anomaly detection model to recognize abnormal behaviour;

3. deploy model at run-time;

4. detect anomalies during production;

5. perform action in response to anomaly.

The portion of the pipeline of detecting anomalies during production is depicted in Figure 5-1. Monitoring
data is provided regularly and is aggregated. When the anomaly detector analytics module detects an
anomaly, it invokes some function to react to the anomaly.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kafka.apache.org/
https://ceph.io/
https://github.com/argoproj/argo
https://hadoop.apache.org/
https://spark.apache.org/

Page 81 of 152

Figure 5-1: Operational Data Lake example

 Typical Data Lake workflow

The implementation and deployment of the stages of the pipeline must be coordinated. The output from one
stage often serves as the input for another stage. See Figure 5-2.

Figure 5-2: Typical Data Lake analytics pipeline setup

A Data Lake can increase its usefulness by providing services (or interfaces) to ease the deployment of
interacting components in a pipeline. The information transferred between stages may be the actual data
upon which to operate, or it may simply be a notification that the previous processing stage has completed
with an indication of where to find the data in the Data Store.

We propose a general Kubernetes (K8s) native framework to allow easy connectivity and coordination
between services defined in a Data Lake. The design rationale is to use K8s to orchestrate services execution.

Page 82 of 152

• Each service is defined as a workflow using Argo Workflow Custom Resource (CR).

• Each service has a channel (Kafka topic) from which it receives input and has a channel (Kafka topic)

to which it sends output. The input/output might be the actual data, or it may include a pointer to

the location of the relevant data to be processed.

• The data to be used from the input (Kafka) channel will be specified as input parameters to the Argo

workflow. The output of the Argo workflow is sent to the output (Kafka) channel.

• Workflows can communicate with each other via Kafka bus or Argo Events or a combination thereof.

• The output produced by a single component could be consumed by multiple consumers. For example,

the output of a data aggregator service may be forwarded both to the data store as well as to a

service that checks for anomalies.

• Output of data can constitute an event that will trigger another workflow (i.e., a service).

• Suppose the service wants to trigger some functionality on the client. This is encapsulated in a

message delivered via the output channel (Kafka topic) of the service.

In addition to event-driven pipelines, there is also a need to support general request-response functions. This
is supported using the underlying K8s mechanisms to run a long-running module that provides a REST
interface to clients.

A combination of event-driven (FaaS) pipelines and general REST-interface request-response modules should
be sufficient to provide efficient solutions for all the identified scenarios.

5.1.2 5GZORRO specific example

In 5GZORRO, we have the following specific example:

1. provide monitoring data;

2. data aggregator;

3. followed by some analytics to detect or predict violation of SLA;

4. followed by actions to be performed upon detection or prediction of SLA violation.

This workflow (depicted in Figure 5-3) is more complicated than the standard event-driven pipeline described
above, and involves the interaction of several services. In this example, there is one workflow to collect and
aggregate the resource monitoring information for each resource, and there is a separate workflow to
monitor SLAs. The metrics of each resource need to be mapped to the SLAs upon which they impact. The
SLA monitoring workflow then needs to obtain the relevant metrics to be able to perform its analytics to
determine SLA breaches and expected breaches. This is accomplished with a combination of data-driven
events (using Kafka topics) and other specialized (REST) interfaces, as needed.

Page 83 of 152

Figure 5-3: Resource Monitoring and SLA breach detection/prediction

5.1.3 Data Lake APIs

The Data Lake inherits the APIs from the various tools that are used in the Data Lake.

• Kubernetes

• S3-compatible Data Store API

• Apache Kafka API

• Argo API

In addition, the 5GZORRO Data Lake provides several APIs to facilitate the use of the Data Lake. In particular,
the Data Lake provides interfaces to upload Argo pipelines with connecting input and output Kafka topics to
trigger those pipelines using Function as a Service (FaaS). For other operations, the Data Lake exposes the
URLs of the underlying services (Kubernetes, Kafka, Data Store, etc) to allow a user to derive the most benefit
from the Data Lake environment.

An Operator is a user of the Data Lake. In 5GZORRO, both Resource (Infrastructure or Spectrum) Providers
and Resource Consumers (e.g., Service Prov

iders) are examples of Operators.

Operation name: registerOperator

Description

This API Registers the Operator, verifies that the Operator is allowed to use Data
Lake services, defines entities needed to manage Data Lake resources used by the
Operator, such as a namespace to be used to identify data stored by the Operator,
Kafka topics to be used by the Operator, etc.

https://kubernetes.io/docs/reference/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://kafka.apache.org/documentation/
https://argoproj.github.io/argo/rest-api/

Page 84 of 152

Input Parameters Type Description

 operatorId string
Unique identifier for Operator that is connecting to the services of
the Data Lake.

 authToken string Authorization token to authenticate the user.

Output Parameters Type Description

 nameSpace string
Identifier used to distinguish the resources designated for use by this
Operator.

 availableResources json

A list of resources (e.g., existing pipelines, selected tools, topics) that
the Data Lake provides for all registered Operators. Includes list of
URLs to allow Operator to access directly Kubernetes, Data Store,
Kafka, etc, that are supported on the Data Lake. Includes Data Store
bucket into which Operator’s data is stored.

Notes

Operation name: unregisterOperator

Description
Clean up the resources allocated for the operator. Includes: delete pipelines
registered to the operator; delete storage allocated for the operator; remove its
namespace, etc.

Input Parameters Type Description

 operatorId string Unique identifier for user.

 authToken string Authorization token to authenticate the user.

Output Parameters Type Description

 N/A

Notes

Operation name: createPipeline

Description
Load specified pipeline in the Data Lake runtime environment and enable it to run
as a Function as a Service.

Input Parameters Type Description

 operatorId string Unique identifier for user.

 authToken string Authorization token to authenticate the user.

 pipelineDefinition json An Argo workflow template in json format.

Output Parameters Type Description

 pipelineId string Unique identifier of pipeline for user.

 inputTopic string A Kafka topic to be used for input to the workflow.

 outputTopic string
A Kafka topic to be used for output from the workflow to send
notifications and/or information to the Operator.

Notes

Operation name: getPipeline

Description Return the information related to specified pipeline.

Input Parameters Type Description

 operatorId string Unique identifier for user.

 authToken string Authorization token to authenticate the user.

Page 85 of 152

 pipelineId json Identifier of pipeline previously provided by createPipeline.

Output Parameters Type Description

 inputTopic string A Kafka topic used for input to the workflow.

 outputTopic string
A Kafka topic used for output from the workflow to send notifications
and/or information to the Operator.

 pipelineDefinition json An Argo workflow template in json format of the requested pipeline.

Notes

Operation name: listPipelines

Description
Return list of pipelines that have been defined by this Operator and their
properties.

Input Parameters Type Description

 operatorId string Unique identifier for user.

 authToken string Authorization token to authenticate the user.

Output Parameters Type Description

 pipelines json A list of pipelines and their properties in json format.

Notes

Operation name: deletePipeline

Description
Unload specified pipeline. Free up the allocated resources, including the Kafka
topics that were allocated.

Input Parameters Type Description

 operatorId string Unique identifier for user.

 authToken string Authorization token to authenticate the user.

 pipelineId json Identifier of pipeline previously provided by createPipeline.

Output Parameters Type Description

Notes

5.1.4 Data Lake Information Models

 Data returned by Data Lake RegisterOperator()

When an Operator calls the RegisterOperator() interface, one of the returned fields is availableResources.
This field returns a list of resources (e.g., existing pipelines, selected tools, topics) that the Data Lake provides
to the Operator. This includes a list of URLs to allow the Operator to access directly Kubernetes, Data Store,
Kafka, etc, that are supported on the Data Lake, including the Data Store bucket into which the Operator’s
data is stored. The availableResources field is provided in json format and is easily extensible.

Table 5-1: Data Lake availableResources

Parameter Type Description

pipelines List of pipelines The pipelines that are pre-defined in the Data Lake and available for use.

 name String Descriptive name of the pipeline.
Example: “resourceMetricsIngestPipeline”

Page 86 of 152

 pipelineId String The unique ID assigned to the pipeline.

topics List of topics The Kafka topics that are pre-defined in the Data Lake and available for use.

 name String Descriptive name of the topic.
Example:“resourceMetricsIngestTopic”

 topicId String The actual Kafka- assigned name of the topic.

urls List of URLs URLs of services in the Data Lake available for use.

 name String Descriptive name of the url.
Example: “k8sUrl”, “objectStoreUrl”, “kafkaUrl”

 urlValue String The actual url of a service.

 Kafka topics

Kafka topics are used for Operators to send data to a pipeline, to receive data from a pipeline, and for other
messaging required in 5GZORRO. Kafka documentation can be found at:
https://kafka.apache.org/documentation/.

 Pipelines template definition

The format to define a pipeline (also called a workflow) is taken from the Argo tool. Details of defining
pipelines can be found at: https://argoproj.github.io/argo/workflow-templates/.

 Data returned by Data Lake listPipelines()

The listPipelines() interface returns a pipelines field that provides a list of pipelines and their properties in
json format.

Table 5-2: listPipelines output structure

Parameter Type Description

pipelines List of pipelines The pipelines that were defined by the user.

 pipelineId String The name of the pipeline.

 inputTopic String The Kafka input topic for the pipeline.

 outputTopic String The Kafka output topic for the pipeline.

 workflowTemplate json The Argo template for the pipeline.

 Kubernetes interface

An Operator may need to define workflows that do not fit in with the 5GZORRO Data Lake model (pipelines).
In this case, the Operator may directly access the underlying Kubernetes support to deploy specialised
analytics components. The Kubernetes API can be found at: https://kubernetes.io/docs/reference/

 Data Integrity

As a general rule, when data is sent to the Data Lake, it should be accompanied with a metadata field that
contains a signed hash of the content in order to be able to check authenticity and correctness of the data.

5.2 Service & Resource Monitoring

Service or resource monitoring serves stakeholders to have a picture of what is the status of their own assets
(network, computational, storage, etc.) with the objective of detecting possible faulty operations or overruns.
In the context of multi-domain deployments, this kind of monitoring service becomes more critical but also
more complex to implement.

https://kafka.apache.org/documentation/
https://argoproj.github.io/argo/workflow-templates/
https://argoproj.github.io/argo/workflow-templates/
https://kubernetes.io/docs/reference/

Page 87 of 152

5.2.1 5GZORRO specific enhancements

The Service & Resource Monitoring is a crucial component of 5GZORRO cross-domain functionality. On the
one hand, it provides certainty to the service or resource providers that their assets are being used as agreed
with the consumers. On the other hand, it also serves the resource or service consumers to be certain that
the conditions signed with the provider are being fulfilled. Moreover, the Service & Resource Monitoring
supports intelligent services in the 5GZORRO platform like, for instance, the Intelligent SLA Monitoring and
Breach Predictor component.

In the 5GZORRO platform, the monitoring data is provided by the resource or service provider This
information is pushed to the local Data Lake and copied to the cross-domain Data Lake, so the resource usage
information is also available across domains. Authorised parties can obtain digested monitoring information
coming from intelligent applications to, for instance, predict or track SLA violations. As monitoring data is
provided over time, it is aggregated and made available in a suitable manner to perform the desired analytics.
Every piece of information that is stored in the Data Lake is digitally signed by the source data provider. This
way, the information source can be tracked and recognised as valid and trustworthy.

5.2.2 Design Details

The Service & Resource Monitoring provides two fundamental services, namely Post Monitoring Data and

Aggregate Monitoring Data. The Post Monitoring Data service is called by the service or resource providers

to store relevant monitoring data concerning the service, slice, and/or resource deployed into a specific data

domain in the Data Lake. The data must be channelled to the Aggregate Monitoring Data module, from where

the results are eventually channelled to an SLA monitoring component. See related Section 5.3.

5.2.3 Specific and relevant workflow(s)

See Figure 4-10 and Figure 5-6 for the role the Service & Resource Monitoring component plays in SLA
detection and prediction.

5.2.4 APIs

Operation name: getMonitoringKpiState

Description
The Service or Resource provider gets information on the status of its shared
resources with the KPI values set in the SLA

Input Parameters Type Description

 OperatorID string Identity of Operator providing the resource

 ResourceID string
The ID of the resource in the 5GZORRO
platform

Output Parameters Type Description

 KPIvalues json List of monitoring KPIs and their values

Notes

Operation name: slaBreachNotification

Description The Intelligent SLA monitoring and breach service sends a notification to the

Input Parameters Type Description

N/A

Output Parameters Type Description

Page 88 of 152

 Reason string
A description of the reason that triggered the
SLA breach

 KPIvalues json List of monitoring KPIs and their values

Notes

5.3 Monitoring Data Aggregator

Monitoring data is provided by each Resource and Service Provider for the resources and services controlled
by that Operator. This data is stored in the Data Lake and is used to keep track of resource usage and to
predict/track SLA violations. As monitoring data is provided over time, it is aggregated and made available in
a suitable manner to perform the desired analytics.

5.3.1 5GZORRO Specific and relevant workflow(s)

The main workflow we have in mind is in Figure 5-3, depicting Resource Monitoring and SLA breach
detection/prediction. Monitoring data is collected for each relevant resource and service. The data is
aggregated over time and is used to detect or predict possible SLA violation. The interfaces and software
components must provide the ability to match the metrics from a provided resource to the SLA it supports.

5.3.2 Design Details

The pipeline is broken into several components. One component simply ingests monitoring data that is
provided by Operators and places the data in the Data Store. A separate component aggregates selected
data over time, as needed by consumers of the data. This aggregated data is also stored in the Data Store.
An interface is provided to register which data requires aggregation. In addition, a mechanism is needed to
specify the list of resources whose monitoring data is required to satisfy a particular service.

A particular resource may be used for one service at one time and for another service at another time. Let’s
call each such time interval an epoch. There may be a need to differentiate the resource metrics for the
different epochs and to not aggregate metrics across epochs. In this case, a resource should be given a
different resourceID for each epoch, so that the Monitoring Data Aggregator component treats them as
different resources.

5.3.3 APIs

Operation name: postMonitoringData

Description
Operator provides monitoring data, which is saved in the Data Store and which is
also forwarded to the aggregator.

Input Parameters Type Description

 OperatorID string Identity of Operator providing the data.

 MonitoringData json Structure of monitoring data json described in 5.3.4.

 StorageLocation url
Bucket in Data Store to place the data; url provided by Data Lake in
registerOperator().

 DataHash string
Hash of provided monitoring data using private key of the
Operator.

Output Parameters Type Description

Notes

Page 89 of 152

Operation name: aggregateMonitoringData

Description
Process accumulated monitoring data and aggregate into a form that is
consumable by other components (e.g., SLA monitor)

Input Parameters Type Description

 OperatorID string Identity of Operator providing the data.

 MonitoringData json
Structure of monitoring data json described in
5.3.4.

 StorageLocation url
Bucket in Data Store to place the aggregated
data.

Output Parameters Type Description

 N/A

Notes

Operation name: startAggregateMetric

Description Specify a particular metric that we want to aggregate.

Input Parameters Type Description

 metricName string Name of metric being aggregated

 metricType string Data type of the metric

 aggregationMethod string May be: sum, average, (other?)

Output Parameters Type Description

 N/A

Notes

Additional information, such as operatorID or time interval, could be specified in future version of this API

Operation name: stopAggregateMetric

Description Specify a particular metric that we want to stop to aggregate.

Input Parameters Type Description

 metricName string Name of metric to stop being aggregated

Output Parameters Type Description

 N/A

Notes

Operation name: lookupMetricsByReference

Description Obtain list of aggregated metrics that pertain to specified referenceID.

Input Parameters Type Description

 referenceID string
Reference (SLA) ID for which we want to
receive list of aggregated metrics.

Output Parameters Type Description

 aggregatedMetrics json List of metrics found for referenceID.

Notes

Page 90 of 152

5.3.4 Monitoring Data Information Models

Monitoring information is provided in postMonitoringData() using json format. An individual resource item
monitoring information contains the following fields:

Table 5-3: Resource Monitoring information

Parameter Type Description

resourceId String Unique ID of resource for which we are collecting monitoring data.

referenceId String Unique ID of entity (e.g., SLA) for whom we are collecting monitoring data.

metricName String Name of metric being monitored.

metricValue String Value of metric being monitored.

timeStamp DateTime The time at which the metric was measured.

The resourceID represents the resource for which we are collecting monitoring data. If the resource used to
be part of one SLA and is now part of another SLA, it may make sense to use a distinct resourceID for the
different epochs, so that data from one epoch is not used to influence decisions in another epoch.

The referenceID might be the SLA identifier to which this resource is dedicated and is used to look up all
relevant monitoring data for that reference.

The monitoring data provided to postMonitoringData() should be a list of such structures, with one entry per
metric being recorded.

When looking up aggregated monitored data by referenceID, the following structure is used:

Table 5-4: Lookup Monitoring Data Structure

Parameter Type Description

resourceId String Unique ID of resource for which we are collecting monitoring data.

metricName String Name of metric being monitored.

metricValue String Value of metric being monitored.

A list of such structures is returned when calling the lookupMetricsByReference() interface.

5.4 Intelligent SLA Monitoring and Breach Prediction

The AIOps cycle that is followed towards the SLAs Closed-loop automation is depicted in Figure 5-4. A

feedback loop starts from (1) “observation”, i.e., the gathering of monitoring data about managed resources

and services as provided by Virtual Resource Managers; (2) it then passes through “orientation”, i.e., SLA

Monitoring and Breach Prediction components where data is aggregated and formalized into SLA monitoring

metrics, as well as into analysed information, notifications and alerts; (3) it subsequently passes through

“decision-making” where intelligent agents receive actionable insights and notifications in order to assess

the current operational status and to decide how to handle detected or forecasted issues and anomalies; (4)

and finally completes with “action”, i.e., the control elements for Network Slice and Service Orchestration

over the managed resources and services, before commencing again, in a continuous manner. Optionally,

lower-level closed loops can also take place within domains, handled by intra-domain MANO components.

All data-plane interactions between components take place via event-based, asynchronous interactions

through the Integration Fabric, which exposes data publication and subscription services, as well as services

for the installation of data pipelines. The latter are executed in the analytics and processing engine of the

Page 91 of 152

Data Storage and Aggregation component, which is also responsible for persisting data, acting as the

Knowledge Base of the feedback loop.

Figure 5-4: SLA Monitoring & Breach Prediction inter-communication Architecture

Delving deeper into the SLA Monitoring and Breach Prediction components, the SLA Breach Prediction

collects and analyses resource monitoring data from the Data Lake and uses ML techniques in order to predict

possible SLA violations. Upon SLA violations, countermeasures can be proactively taken to maintain the

desired QoS for an offered service. The services that are offered by the SLA breach prediction module were

described in deliverable D2.2. Each described service includes a list of interfaces in terms of input and output

parameters that are explained below.

5.4.1 5GZORRO Specific enhancements

A high-level design proposed for both SLA monitoring as well as breach prediction services is shown in Figure

5-5. Currently, the design is based on the ETSI ZSM architecture and involves the Data Lake as well as the

Smart Contracts Lifecycle Manager modules.

Figure 5-5 was made with the assumption that the Data Lake module is centralized and cross-domain and is

not distributed for each domain. In addition, the "Subscribe" arrow includes both the triggering for

establishment/configuration of data pipelines (which is subsequently handled by relevant module(s)) and the

subscription to related communication and events through the Integration Fabric.

The KPI that is linked to this module is the following:

Page 92 of 152

• Ability for untrusted parties to negotiate, set-up and operate a new technical/commercial
relationship via a Smart Contract for 3rd-party resource leasing/allocation with associated SLA (KPI
target: Smart Contract for 3 or more untrusted parties)

• Implement/correlate technical service configurations and SLA monitoring interactions between
multiple parties. The target for this KPI is:

o SLA measurements and validation from at least 3 operators involved in a multi-party service
chain)

Figure 5-5 SLA monitoring and breach prediction architecture

5.4.2 Specific and relevant workflow(s)

The operational pattern that describes the sequence of actions that are linked to the Intelligent SLA Breach

Prediction module is shown in the following Figure.

The workflow for SLA Breach Prediction consists of the following steps:

Step 1–2: The Resource Provider requests from the Cross-Domain Monitoring and Analytics (i.e., the Data

Lake) to start the algorithms for the SLA Breach Prediction.

Steps 3–4: Monitoring data from the provider is recorded in the Data Lake, through the Service and Resource

Monitoring.

Step 5: In turn, the Service and Resource Monitoring module analyses and aggregates the ingested data

according to specifications defined in the Smart Contract.

Page 93 of 152

Steps 6–7: Service and Resource Monitoring periodically publishes the aggregated monitoring data, which

can then be retrieved by the Intelligent SLA Monitoring and Breach Prediction module in order to train the

Machine Learning (ML) model.

Step 8: The ML model is executed at certain time intervals.

Steps 9–10: In case that an SLA Breach is predicted, the Resource Provider is informed accordingly and takes

actions according to predefined rules.

Figure 5-6: SLA Breach Prediction workflow

Page 94 of 152

5.4.3 APIs

Table 5-5: Definition of Start SLA Breach service interface

Service name: SLA Breach Prediction Type: Cross-domain

Capabilities
Support
(O|M)

Description

Start SLA Breach
Prediction

M

The service starts to receive and analyse resources monitoring data from the
Monitoring Data Aggregator service for specific contract SLAs using AI
techniques in order to predict possible breaches in SLAs and detect
anomalies. SLA Breach Prediction process could be started by the
marketplace after a new contractual agreement or by the Intelligent Network
Slice and Service Orchestration service in order to estimate the future needs
for resources.

Update SLA Breach
Prediction

M

This capability is used when there is a need to change the characteristics of
an SLA Breach Prediction Process. It can be used when the contracts SLAs
have been changed and when there is a need to add/remove SLAs or modify
Start/End Times.

Terminate SLA Breach
Prediction

M
This capability is used to stop receiving and analysing resources monitoring
data for specific contract SLAs.

Return active SLA Breach
Predictions

M
This capability is used to create a list of active SLA Breach Predictions, their
descriptions, their breach predictions and their subscribers.

Subscribe to SLA Breach
Prediction

M
This capability is used when a module should receive SLA Breach Predictions
for specific SLAs/contracts.

Publish Notifications for
SLA Breach Predictions

M

This capability is used to send to the subscribed modules predictions for SLA
violations. The predictions include the SLOs that will be violated, when these
violations will occur, to what extent the SLAs will be violated and the level of
certainty for SLAs violations.

Unsubscribe from SLA
Breach Prediction

M
This capability is used to stop receiving notifications for SLA breach
predictions for specific SLAs/contracts.

Configure Machine
Learning Algorithms

M
This capability is used to select and configure the machine learning
algorithms based on the types of SLA metrics to be monitored and the
associated requirements.

Notes

none

Operation name: startSLABreachPrediction

Description
This operation is used to start receiving and analysing monitoring data for specific
contract SLAs.

Input Parameters Type Description

 Description String A textual description of SLA Breach Prediction.

 ContractIDs
List of
Strings

The identifiers of the contracts for which predictions will be made for
violations of their SLAs.

 SLAMetrics
String
array

List of specific SLA metrics for the case that the predictions will not
be related to all SLAs of the contracts.

 StartTime DateTime
The SLA Breach Prediction could start immediately or at a specific
time.

 EndTime DateTime
The SLA Breach Prediction for the specific contract/SLAs will be
terminated and the END Time of when the module will receive the
‘Terminate SLA Breach Prediction” command.

Page 95 of 152

Output Parameters Type Description

 SLABreachPredictionID String
In case of success, it returns the Identifier of the new SLA Breach
Prediction process.

 ErrorMessageID String In case of error, it returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Operation name: updateSLABreachPrediction

Description
This operation can be used when the contracts SLAs have been changed and when
there is a need to add/remove SLAs or modify Start/End Times.

Input Parameters Type Description

 SLABreachPredictionID String
The Identifier of the SLA Breach Prediction process that will be
modified.

 ContractIDs String
The identifiers of the contracts for which predictions will be made for
violations of their SLAs.

 SLAMetrics String
List of specific SLA for the case that the predictions will not be related
to all SLAs of the contracts.

 StartTime DateTime The SLA Breach Prediction could start immediate or at a specific time.

 EndTime DateTime
The SLA Breach Prediction for the specific contract/SLAs will be
terminated and the END Time of when the module will receive the
‘Terminate SLA Breach Prediction” command.

Output Parameters Type Description

 Status String
In case of success, it returns a success message, otherwise an error
message.

 ErrorMessageID String In case of error, it returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Operation name: terminateSLABreachPrediction

Description
This operation is used to stop receiving and analysing monitoring data for specific
contract SLAs.

Input Parameters Type Description

 SLABreachPredictionID String
The Identifier of the SLA Breach Prediction process that will be
terminated.

 EndTime DateTime
The SLA Breach Prediction could be terminated immediately or at a
specific time.

Output Parameters Type Description

 Status String
In case of success, it returns a success message, otherwise an error
message.

 ErrorMessageID String In case of error, it returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Page 96 of 152

Operation name: getActiveSLABreachPredictions

Description
This operation is used to create a list of active SLA Breach Predictions, their
descriptions, their breach predictions and their subscribers.

Input Parameters Type Description

 SLABreachPredictions
String
array

Select all or a list of SLA Breach Predictions.

Output Parameters Type Description

 Description String A textual description of SLA Breach Prediction.

 ContractIDs String The identifiers of the contracts of each SLA Breach Prediction.

MonitoredSLAMetrics

String
array

List of specific SLAs of each SLA Breach Prediction.

 StartTime DateTime The SLA Breach Prediction start time.

 EndTime DateTime The SLA Breach Prediction end time.

 Subscribers
String
array

List of Subscriber Identifiers.

 violations
String
array

Each violation includes:
1. the contract ID,
2. the SLA metrics that will be violated,
3. when these violations will occur,
4. to what extent each SLA will be violated and

the level of certainty

 Status String
In case of success, it returns a success message, otherwise an error
message.

 ErrorMessageID String In case of error, it returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Operation name: subscribeToSLABreachPrediction

Description
This operation is used when a module should receive SLA Breach Predictions for
specific SLAs/contracts.

Input Parameters Type Description

 SubscriberID String The unique identifier of the module that will become a subscriber.

 SLABreachPredictionID String
The Identifier of the SLA Breach Prediction process in which the
module will become a subscriber.

 ContractIDs String
The identifiers of the contracts for which the module will monitor
SLAs breach predictions.

Output Parameters Type Description

 Status String
In case of success, it returns a success message, otherwise an error
message.

 ErrorMessageID String
In case of error (e.g., subscription denied for security reasons) it
returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Page 97 of 152

Operation name: publishSLA Breach PredictionsNotifications

Description
The module sends to the subscribed modules predictions for SLA violations. The
predictions include the SLA metrics that will be violated, when these violations
will occur, to what extent the SLAs will be violated and the level of certainty.

Input Parameters Type Description

 - - -

Output Parameters Type Description

 Violations
String
array

Each violation includes:
1. the contract ID,
2. the SLA metrics that will be violated,
3. when these violations will occur,
4. to what extent each SLA will be violated and

the level of certainty

Notes

Operation name: unsubscribeFromSLABreachPrediction

Description This operation is used to stop receiving notifications for SLA breach predictions.

Input Parameters Type Description

 SLABreachPredictionID String
The Identifier of the SLA Breach Prediction process from which the
module will unsubscribe.

Output Parameters Type Description

 Status String
In case of success, it returns a success message, otherwise an error
message.

 ErrorMessageID String In case of error, it returns the Identifier of the error message.

 ErrorDescription String Optionally it returns specific details for the error.

Notes

Operation name: configureMachineLearningAlgorithms

Description
This operation allows to select and configure the machine learning
algorithms based on the types of SLA metrics to be monitored and the
associated requirements.

Input Parameters Type Description

 ConfigurationParameters json
A list of the algorithm specific configuration parameters that
are used for prediction of SLA violations (i.e., unsupervised,
supervised).

Output Parameters Type Description

 Status String
In case of success, it returns a success message, otherwise an
error message.

ErrorMessageID String In case of error, it returns the Identifier of the error message.

ErrorDescription String Optionally it returns specific details for the error.

Notes

Page 98 of 152

5.5 Smart Resource and Service Discovery application

The 5GZORRO architecture aims to facilitate multi-party collaboration in dynamic 5G environments where

Operators and Service Providers often need to employ 3rd party resources to satisfy a contract. To do so,

Resource Providers make their resource offers available for sharing by advertising them through the

5GZORRO Marketplace. These resources belong to different parts of the 5G network, such as the Mobile

Core/Cloud, the RAN, as well as the mobile or infrastructure edge resources.

As previously stated, stakeholders acting as assets consumers interact with the Marketplace, and in particular

with the services provided by the Resource and Service Offer Catalogue, to obtain the set of product offers

available and suitable to satisfy their need. While this approach may be sufficient, it leaves to the customer,

not only the decision of what 3rd party resources are the most appropriate to use, but also the fine-grained

searching over provided offers in order to find the ones that best match some particular scenario or

optimization criteria, which quite often may imply more complex trade-offs.

To complement this and enforce the zero-touch capabilities of the 5GZORRO platform, the Smart Resource

and Service Discovery application allows obtaining a customized subset of resources that best satisfy the

consumer expectations. Specifically, the aim of this component is to enable a programmatic and intent-based

discovery by using smart selection techniques based on machine learning.

5.5.1 5GZORRO Specific enhancements

In this scope, a zero-touch offer discovery, suitable for making decisions about what resources are the most

appropriate to use in each particular case, will be supported by two modules/modalities:

• Marketplace Catalogue – Automated Discovery: based on imperative constraints and considerations

provided by the consumer as part of the lookup request (e.g., category, geographic location, price,

provider preference). Response provides all the available offers that match the requested filters.

• Smart Discovery Application – Intent-based Discovery: based on (high-level) intent-based priorities

(e.g., performance, proximity, cost, slice segment, and trade-offs). Response provides the most

suitable offers according to the particular priority the consumer of the application has requested.

The architecture of the Smart Resource and Service Discovery application module is illustrated in Figure 5-7.

In this architecture the request for this module is originating from the Intelligent Slice and Service Manager

(ISSM) that is introduced in 5GZORRO Deliverable 4.1 150[3]. As a result of the request the Smart Resource

and Service Discovery returns to ISSM a list of resource offers. The method that is used to retrieve these

offers is described in the following part of this section.

In addition, to respond to one of the 5GZORRO objectives (i.e., to develop ML-based intelligent discovery

functions), the Smart Resource and Service Discovery application plays a fundamental role in the attainment

of the following KPI:

• Support intent-based API to guide the AI-driven resource discovery system (KPI target: open

5GZORRO API specification for resource discovery)

• Automatically discover and “inventorize” various types of resources (i.e., compute, storage, network

at core, edge, far-edge), spectrum and services capabilities from different domains and service

providers

Page 99 of 152

Figure 5-7: Smart Resource and Service Discovery application architecture

To achieve this goal, this module exposes an API providing intent-based support and leveraged by AI-based

models to perform intelligent resource discovery. As stated in [8], an intent-based API is primarily the

abstracted and simplified API to request an intent. Instead of specifying in detail the characteristics of the

desired resource offers (e.g., via filters over the Catalogue), just a prescription is given, which in this case may

correspond to a slice segment and/or to an aspect to be prioritized. In particular, this component is aimed to

recognize keywords in the provided intention and to translate them into specific groups/classes.

Regarding the supporting AI-based models, the intelligent discovery will be enabled by data clustering

techniques where resources of a certain class (e.g., based on location) will be grouped together. In particular,

for the sake of efficiency and meeting the dynamism requirement of 5GZORRO, the proposed methodology

consists of two steps:

(1) Off-line clustering: a clustering algorithm would take care of taking offline a training dataset to learn

the similarities from the resources properties and obtain the groups/clusters.

(2) On-line prediction: Upon the arrival of a new incoming offer, a supervised classification algorithm

that is trained with the dataset of Step 1 (now labelled) will predict to which of the computed clusters

it belongs.

In terms of technical implementation, clustering computation is based on a variety of features (i.e., criteria),

as well as relations between them, contained in the categorical information conforming the resource offers.

The topics that are relevant to group resources with similar features are linked to type (compute, storage,

network, RAN); format (physical, virtual); slice segment (core, RAN, transport, edge); location; offered price

and capabilities; among others.

5.5.2 Specific and relevant workflows

The workflow associated with the services offered by the Smart Resource and Service Discovery application

is shown in Figure 5-8.

Page 100 of 152

Figure 5-8: Smart resource and service discovery workflow

Step 1: Upon the placement of a new offer, a trained ML-model for online prediction, served at the Cross-

domain Analytics & Intelligence for AIOps Platform, is used to define the group (i.e., cluster) to which the

new offer belongs. The resulting classified offer is then stored for their consumption by the discovery

requests.

Step 2-3: The information provided by the consumer request via the intent-based interface is automatically

translated into the specific cluster(s) that best reflect the customer expectations.

Step 4: The resulting offers contain an indicative score that is computed based on a formula on top of the

discovery criteria. Moreover, aside from the score they can then be further analysed at the consumer domain

for selecting the most suitable offer following other criteria (e.g., trust assessment).

5.5.3 APIs

To perform the aforementioned functionalities, the operations supported by the Smart Resource and Service
Discovery application interfaces are described below.

Operation name: classifyOffer

Description
Endpoint for classifying an offer, resulting in a new entry added to the
application database with classified offers.

Input Parameters Type Description

 Product Offer Object
Object containing the product offer information based on the

considered information model (see Section 6.3.1)

Output Parameters Type Description

 - - -

Notes

Operation name: removeClassifiedOffer

Description
Endpoint for removing a classified offer from the application database
(because of the offer being no longer available on the Marketplace).

Input Parameters Type Description

 Product Offer DID String DID of the product offer to be removed

Page 101 of 152

Output Parameters Type Description

 - - -

Notes

Operation name: discoverOffers

Description
Endpoint for discovering available offers, returning a list of most suitable
offers for final selection.

Input Parameters Type Description

 Discovery Criteria String
String containing (high-level) priorities to be taken into account
for the discovery. This parameter will be translated into the
specific clusters that correspond with the requested priority.

 Maximum No. of Samples Integer
(Optional) Numeric value representing the maximum number
of samples to be retrieved.

Output Parameters Type Description

 List of Offers List
A list of offers matching the supplied discovery criteria. Each
offer also contains a score computed by the relevance to the
discovery criteria. (see Section 6.3.1)

Notes

Operation name: clusteringSelection

Description
Endpoint for selecting the features that will be enabled in the Off-line
clustering algorithm.

Input Parameters Type Description

 Feature List List
The default list of features used for the clustering algorithm
training. This list can be updated from the API and impacts the
retrieved List of Offers.

Output Parameters Type Description

 - - -
Notes

Page 102 of 152

6 Information Elements

6.1 5GZORRO DIDs

DIDs are a novel type of identifiers proposed by W3C that allows associating any subject, such as stakeholders,
resources, services, organizations, entities, and so on, with a digital identity. In other words, DIDs are global
and unique identifiers that do not need a centralised registration authority since they are created and/or
recorded using cryptographic proofs. Furthermore, decentralised identifiers provide characteristics such as
decentralised control, privacy, security, interoperability, and extensibility, making it a pioneering technology
while addressing some shortcomings of current identity management systems.

In order to thoroughly understand the functionality of decentralised identifiers and the actions associated
with them, several key concepts should be known beforehand. According to W3C Decentralized Identifier
WG, DIDs can utilise multiple technologies and cryptographies in order to carry out the creation, persistence,
resolutions, or interpretation of DIDs. In general, a decentralised identifier is a URL, similar
to "did:5gzorro:123456789abcdefghi", composed of a URI scheme identifier, an identifier for the DID method,
and a DID method-specific identifier, respectively. Normally, DIDs associate a DID Subject, the DID's
owner, with a DID Document, the important metadata related to a decentralised identifier that can be used
to authenticate it or to verify its relationship with the DID. Among metadata registered in a DID Document,
we can find service endpoints, public keys as well as other attributes or claims detailing DID Subject or DID
delegate characteristics. These attributes are made up of a generic format of DID, usually a JSON schema,
that is declared in the DID Core specification. The official syntax of a decentralised identifier, also known as
DID scheme, is declared in a DID method specification. In spite of the several DID methods available,
5GZORRO is going to generate and register a new method named "5gzorro" in order to build a specific
representation that contains the necessary attributes, properties, and claims. Besides, this new DID method
will utilise the distributed ledger technology deployed in the ecosystem. Finally, DIDs also provide services
that are a communication mechanism with the DID's owner (subject) such as discovery services or agent
services. Nevertheless, it should be pointed out that 5GZORRO Services are different from DID Services since
5GZORRO Services are communication services offered to end-user customers that are built on top of
5GZORRO Resources.

Another concept related to decentralised identity management is Verifiable Credentials (VCs). Even though
it is related to decentralised identifiers, it is different from DID Documents. A Verifiable Credential is an
electronic credential which can represent the same information that physical credentials represent in real
life such as driving license, passport, health insurance card, and so on. Therefore, Verifiable Credentials
represent statements made by an issuer in a tamper-evident and privacy-preserving manner. In this sense,
the principal dissimilarity between DID Documents and VCs is that DID Documents are usually stored in the
Blockchain while VCs are stored in a subject decentralised repository, for example. Thus, DID Documents
must contain public data since they could be accessed by everyone, whilst VCs are only consulted by entities
that have the necessary permissions. Taking into consideration the aforementioned and assuming 5GZORRO
Governance DLT is a permissioned public DLT (e.g., Hyperledger INDY), it is critical that 5GZORRO DID
Documents that are registered in the Governance DLT contain no personal data. This is because, a public DID
Document can be retrieved from the Verifiable Registry (i.e., 5GZORRO Governance DLT) as soon as you know
its DID without having to contact its controller/agent while the VC can only be retrieved from the Holder
Agent. The Verifiable Credentials also has a data model, just like DIDs, with specific syntax and sematic
defined by the W3C standard.

To mitigate DID correlation risks, it is possible to use pairwise unique DIDs, i.e., by using different DID for
every relationship. In this case, the DID and its associated DID Document is not registered in the DLT and it is
called Pseudonymous DID. A DID that is registered in the DLT is called Public DID.

https://w3c.github.io/did-core/
https://w3c.github.io/did-core/
https://w3c.github.io/did-core/#dfn-did-subjects
https://w3c.github.io/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-delegate
https://www.w3.org/TR/did-core/#dfn-did-delegate
https://w3.org/TR/did-core
https://www.w3.org/TR/did-core/#dfn-did-schemes
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-representations
https://w3c.github.io/did-spec-registries/
https://www.w3.org/TR/did-core/#dfn-services
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

Page 103 of 152

6.1.1 High Level View

 5GZORRO DIDs

The 5GZORRO DID syntax is compliant with W3C DID syntax by using a unique method name like "5gzorro".
As such, an example for a 5GZORRO DID for some 5GZORRO resource traded in the Marketplace would look
like: "did:5gzorro:123456789abcdefghi".

At this point, 5GZORRO is using the DID parameters already specified at https://w3c.github.io/did-spec-
registries/.

The following 5GZORRO DID Subjects have been identified:

Subject type Public Description

5GZORRO Stakeholder Yes
The legal entity that operates 5GZORRO administrative domains as defined in
D2.1 [2] including Resource Providers, Resource Consumers, Regulators,
etcetera.

5GZORRO Platform No
The software system implementing 5GZORRO functionalities e.g., the
Marketplace node, that is deployed and operated by a 5GZORRO stakeholder.

5GZORRO Resource No
The available resource or set of resources managed by a Resource Provider
through the 5GZORRO Framework which is/are deployed and enabled to be
traded in the Marketplace.

5GZORRO Service No
A 5G Service or set of 5G Services ready for utilizing in the Marketplace and
which is/are delivered by a 5G Service Provider.

5GZORRO Product No
A 5G Product offer comprised by 5GZORRO resources and / or services, that is
published in 5GZORRO Catalogue.

5GZORRO Business
Agreement

No
The Business Relationship among 5GZORRO Stakeholders to support the trade
of 5GZORRO Resources and Services in the 5GZORRO Marketplace with specific
SLA requirements that are controlled with DLT Smart Contracts.

5GZORRO Marketplace
Governance Board

Yes

This entity represents the governance board of 5GZORRO Marketplace where
all Stakeholders with permissions to take governance decisions are included. All
Governance actions (including voting) and decisions are associated to the
Marketplace Governance Board.

 Verifiable Credentials

The Verifiable Credentials Services to be associated to 5GZORRO DID Subjects identified above, are
described and mapped to 5GZORRO services in the table below.

Table 6-1: Mapping of 5GZORRO DID Subjects to 5GZORRO Services

Name
WFs

usage
Claims Description Holder Issuer Verifier

https://w3c.github.io/did-spec-registries/
https://w3c.github.io/did-spec-registries/

Page 104 of 152

stakeholderVC 1.1

Claim about type of
5GZORRO role including
Regulator, Resource
Provider, Resource
Consumer, Service Provider,
and Service Consumer.
Claims about Resource
types to be provided or
consumed

Admin DID Agent,
Trading DID Agent

Admin
DID
Agent

Admin DID
Agent
Trading DID
Agent

platformVC 1.1

Claims about the different
5GZORRO operational
software packages including
its endpoints.

5GZORRO Platform
DID
User-
Agent

Marketplace
Governance

governanceActionVC
1.1,
1.7

Claim about a certain
governance action
performed by a
Marketplace Admin e.g.,
vote for decision

governanceDecisionVC
1.1,
1.7

Claim about a certain
governance decision
including.

▪ to accept or reject a
new 5GZORRO
member

▪ resolutions about
SLAs disputes

Admin DID Agent
Trading DID Agent

Admin
DID
Agent

Admin DID
Agent
Trading DID
Agent

resourceVC 1.2

Claim about rights over a
certain 5GZORRO Resource
or set of 5GZORRO
Resources.
Claim that Resource is
deployed and ready to be
consumed by consumers
and a certain behaviour is
expected.
Claim that data generated
by the Resource namely
monitoring data, is
trustworthy

Trading Provider
DID Agent

Admin
DID
Agent

Trader
Consumer
DID Agent

Page 105 of 152

serviceVC
3.1,
3.2,
3.3

Claim that service is
deployed and ready to be
consumed by service
consumers and a certain
behaviour is expected.

Claim that service can be
extended to other domains,
by defining descriptors to be
used and VNF registries
endpoints to be used from
where images can be
downloaded and deployed
in the new domain.

Trading Provider
DID Agent

Admin
DID
Agent

Trading
Consumer
DID Agent

agreementVC

Claim that identify the
stakeholders involved in the
agreement and the
different roles played by
each other including
the identification of
Resources and Services
provided in the context of
the agreement.

5GZORRO Business
Agreement

Admin
DID
Agent

Trading DID
Agent

6.1.2 Detailed Information Model

The different Information Models to be used by 5GZORRO Credentials are detailed in this section which
are aligned with W3C Verifiable Credential.

 Core Verifiable Credential Information Model

The Core Verifiable Credential Information Model that is used by all 5GZORRO DID Subjects, is composed by
the following main parameters: the context of the VC, the id is an identifier that others must use in order to
express statements covered by this verifiable credential, the type means the kind of information represented
in the VC, the credentialSubject represent who is the subject or subjects of claims, the issuer is the person or
entity that allocates this VC, the issuanceDate indicates when VC was emitted and validated, the
expirationDate depicts when VC will not be considered useful, the credentialStatus is utilized for knowing
information about the current status of a VC and finally, the proof contains all details necessary to assess this
VC is authentic.

More details are provided in the table below:

Parameter Type Description

id URI
Identifier that others must use in order to express statements covered by
this verifiable credential

type String

Kind of information represented in the VC. The following 5GZORRO VC
types are considered:
"StakeholderCredential","ResourceCredential", "ServiceCredential", "Prod
uctCredential", "AgreementCredential", "GovernanceBoardCredential".

Page 106 of 152

credentialSubject

 id DID The Subject DID

 claims List of Claims
Set of claims about the Verifiable Credential Subject. See Subject Claims
Information Model below

issuer List of objects Person or entity that allocates this VC

 id DID Identifier of the Issuer

 name String Issuer name

issuanceDate
String (of
an [RFC3339])

Indicates when VC was emitted and validated

expirationDate
String (of
an [RFC3339])

Depicts when VC will not be considered useful

credentialStatus List of objects Utilized for knowing information about the current status of a VC

 id String Identifier of the Credential Status used, must be a URL

 type String
CredentialStatus type that should provide enough information to
determine the current status of the credential including "active",
"suspended", "revoked"

proof
List of Proof
objects

Contains all details necessary to assess whether this VC is authentic. See
Proof Information Model below

 Verifiable Credential Claims Information Model

The Information Model for the different Claim objects used according to the different credential types and
DID subjects are defined in the tables below.

Parameter Type Description

stakeholderClaim StakeholderClaim Object A Claim object to be used in Credentials of StakeholderCredential type

resourceClaim ResourceClaim Object
A Claim object to be used in Credentials of ResourceCredential type.
Compliant with Catalogue ResourceCandidate Information Model

serviceClaim ServiceClaim Object
A Claim object to be used in Credentials of ServiceCredential type.
Compliant with Catalogue ServiceCandidate Information Model

agreementClaim AgreementClaim Object A Claim object to be used in Credentials of AgreementCredential type

productClaim ProductClaim Object
A Claim object to be used in Credentials of ProductCredential type.
Compliant with Catalogue ProductCandidate Information Model

governanceClaim GovernanceClaim Object A Claim object to be used in Credentials of GovernanceCredential type

platformClaim PlatformClaim Object A Claim object to be used in Credentials of StakeholderCredential type

Stakeholder Claim Object

Parameter Type Description

stakeholderServices List of DIDs List of 5GZORRO platform services operated by the Stakeholder

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Page 107 of 152

stakeholderRoles List of Objects List of Roles played by the Stakeholder

 role String
Type of 5GZORRO role including Regulator, Resource Provider,
Resource Consumer, Service Provider, and Service Consumers

 assets List of Strings

Types of assets to be provided or consumed according to
Stakeholder role including Resource sub-types
(InformationResource, SpectrumResource, PhysicalResource,
NetworkFunction, …)

Agreement Claim Object

Parameter Type Description

stakeholderDID DID This is the stakeholder DID

stakeholderRole String Role played by the stakeholder

productDID DID Product DID being traded

authorityService String
Entity that performs the SLA data monitoring aggregation and
executes the violation check/analysis.

Governance Claim Object

Parameter Type Description

actionType String
Type of Governance Actions including "GovernanceVote",
"GovernanceMembershipDecision",
"GovernanceSlaViolationDecision"

actionTarget DID The DID of the Subject on which the decision is taken

actionExecutor DID The DID of the Board member that is taking the action

actionDate String (of RFC3339) When the action was taken

actionValue String The value of the action that depends on the action type

description* String A human readable description about the action

Platform Claim Object

Parameter Type Description

platformType String
Type of 5GZORRO platforms including "Cross-domain AIOps",
"Marketplace", "Governance", "ZSM&O"

deploymentDate String (of RFC3339) When platform was deployed

version String Version of the deployed platform

deploymentStatus String
Information about the platform availability, including unavailable,
available, outstage, disruption

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Page 108 of 152

endpoints List of Objects
list of key-value Objects where key is the service name and value the
service endpoint url

 Verifiable Credential Presentation Information Model

Verifiable Credential Presentation is Data derived from one or more verifiable credentials, issued by one or
more issuers, that is shared with a specific verifier. A verifiable presentation is a tamper-evident presentation
encoded in such a way that authorship of the data can be trusted after a process of cryptographic verification.
Certain types of verifiable presentations might contain data that is synthesized from, but do not contain, the
original verifiable credentials (for example, zero-knowledge proofs).

The Verifiable Credential Presentation parameters are detailed in the table below:

Parameter Type Description

id* String Provide a unique identifier for the presentation

type List of objects
Is required and expresses the type of presentation, such as
VerifiablePresentation.

verifiableCredential* List of objects
Must be constructed from one or more verifiable credentials, or of
data derived from verifiable credentials in a cryptographically
verifiable format.

holder* DID
Is expected to be a DID for the entity that is generating the
presentation.

proof* List of Proof objects
 The value of the proof property ensures that the presentation is
verifiable

 Verifiable Credential Proof Information Model

Contains all details necessary to assess whether this VC is authentic. The set of attributes to be used in a
proof will vary according to the representation language and the technology used.

Parameter Type Description Example

type String
Expresses the cryptographic signature
suite that was used to generate the
signature

"RsaSignature2018"

created
String (of
an [RFC3339])

Indicates when proof was created "2021-06-18T21:19:10Z"

proofPurpose String
Expresses the purpose for the proof and
ensures this information is protected by
the signature

"assertionMethod"

verificationMethod String
The verificationMethod property
specifies the public key that can be used
to verify the digital signature

"https://example.com/jdoe/keys/1"

https://tools.ietf.org/html/rfc3339

Page 109 of 152

jws String

If a JWS is present, the digital signature
either refers to the issuer of the
verifiable credential, or in the case of a
verifiable presentation, the holder of
the verifiable credential.

"eyJhbGc..DJBMvv"

6.2 Resource and service modelling

Heterogeneity of resources and incorporation of edge resources to the available infrastructure mandate the
appropriate modelling of resources. Modelling should be in such an abstracted level that fully describes the
resources’ capabilities, but at the same time allows for their homogeneous management. In this section, the
proposed resource and service model is analysed in the form of class diagrams. This approach serves for
maintaining resource information (including usage) at different levels in our system as well as for exchanging
information about resources between different system components.

We assume that there are two general types of offers that can be supported by the Marketplace, namely the
Resource offers and the Service offers, similarly to the TM Forum ZOOM Information Model [5].

6.2.1 Resource Model

To begin with the Resource Model, a high-level representation of its class diagram is shown in Figure 6-1. The
Resource is defined as an abstract entity of interest to the managed environment that may or may not be
manageable by electronic means. It may or may not form part of a Product offer [5]. According to the location
of a resource, it can be characterised as an edge or as a core resource. The edge of the network is the part
that’s closer to the end user, while the core is the centralized hub of the network that processes data. Thus,
the edge resources usually reside at the endpoints and at the first hop from the endpoints into the core of
the network. For example, in enterprise, the endpoints are Personal Computers (PCs), including their
associated adapter, and modems for connecting to carriers, and various connected devices. Other edge
resources are WiFi access points as well as desktop and wiring closet switches.

Figure 6-1: Resource Model Class Diagram

Table 6-2 depicts the Information Model of a Resource candidate. The last column shows an example of a
Resource offer, by giving values to the respective fields.

Table 6-2: Resource candidate Information Model [9]

Parameter Type Description Example

id String Unique identifier for the resource
in the catalogue

"7479"

Page 110 of 152

didRef DID Distributed identifier of the
resource

href String Hyperlink reference to this
resource

"https://host:port/catalogManagement/
resourceOffer/7479"

name String Name of the resource "Virtual Storage Medium"

description String Description of this resource "This resource offer ..."

type String Class type of this resource "ResourceOffer"

schemaLocatio
n

String This field provides a link to the
schema describing this resource

https://host:port/catalogManagement/sc
hema/ResourceOffer.yml

baseType String The (immediate) base class type
of this resource

version String The version of resource offer "3.2"

validFor TimePeriod The period for which this resource
is valid

"startDateTime": "2020-08-12T00:00",
"endDateTime": "2021-03-07T00:00"

lastUpdate DateTime Date and time of the last update
of this resource

"2020-08-09T00:00"

lifecycleStatus String Used to indicate the current
lifecycle status of the resource
offer

"Active"

category A list of
category
references
(ResourceCate
goryRef)(Table
6-3)

The category resource is used to
group resource offerings in logical
containers. Categories can
contain other categories and/or
resource offerings.

See Table 6-3

resourceSpecifi
cation

ResourceSpeci
ficationRef (

Table 6-4)

A resource specification reference See

Table 6-4

resourceOwner
DID

DID Distributed Identifier of the
resource owner

resourcePhysic
alCapabilities

List of objects A list of operation band values See Table 6-6

resourceVirtual
Capabilities

List of objects A list of operation band values See Table 6-7

Table 6-3: ResourceCategoryRef Information Model [9]

Parameter Type Description Example

id String Unique identifier of the category "5355"

href String Reference of the category "https://host:port/catalogManagement/categor
y/5355"

version String Category version "1.1"

name String Name of the category "Cloud Resources"

type String Class type of this resource "ResourceCategory"

Table 6-4: ResourceSpecificationRef Information Model [9]

Parameter Type Description Example

id String Unique identifier of the resource specification "42"

href String Reference of the resource specification "http://hostname:port/catalogMana
gement/resourceSpecification/42"

version String Resource specification version "3.2"

name String Name of the required ResourceSpecification "VirtualStorageMedium"

type String Class type of this resource "VirtualDeviceSpec"

Page 111 of 152

Another class relevant to the Information Model of Resource, is the ResourceSpecification class (Table 6-5),
where the resource specification is held.

Table 6-5: ResourceSpecification Information model

Parameter Type Description

href DID Distributed identifier of the resource specification

name String The name of the resource specification

category String Category of the target resource.

resourceSpecCharacteristic List of
ResourceSpecCharacteristic
[9]

A list of resource spec characteristics
(ResourceSpecCharacteristic [*]). This class
defines the characteristic features of a resource
specification. (see Table 6-6 and Table 6-7)

ResourceSpecCharacteristic list has two types of elements, resourcePhysicalCapabilities and
resourceVirtualCapabilities, analysed in Tables Table 6-6 and Table 6-7, respectively. This level of description
allows to model the virtual resources and the hardware capabilities that can be exposed. With different
combinations of two simple models, it is possible to represent: A full cluster offering with any PaaS capability,
simple virtualized instance offers, physical storage node offers or full bare metal offers.

Table 6-6: resourcePhysicalCapabilities Information Model

Parameter Type Description Example

name String Name of the Physical Capability "hardwareCapabilities"

description String Description of the capability "Physical capabilities
offered in the resource "

cloudId String Unique identifier of the cloud "cloudId1"

datacenterId String Unique identifier of the datacenter "datacenter1"

nodeId String Unique identifier of the node "node1"

hardwareCapabilities List of objects Descriptor of HW capabilities (GPU,
SDD storage, FPGA, ASIC, NIC, high
performance network uplinks, etc.)

 hardwareCapKey String Type of capability storage

 hardwareCapValue Float Value of capability 200

 hardwareCapUnit String Unit of measure (Gb, MHz, etc.) GB

 hardwareQuota Float Quota of offered resource

feature List of objects Describes the PaaS of the capability

 type String Openstack/K8s/Openshift etc

 href String Hyperlink reference to the target
specification

 isBundle String A flag indicating if the node is master
(true) or not (false)

Table 6-7: resourceVirtualCapabilities Information Model

Parameter Type Description Example

name String Name of the capability "virtualCapabilitie
s"

description String Capability description "Virtualized
capabilities
offered in the
resource"

Page 112 of 152

cloudId String Unique identifier of the cloud "cloudId1"

datacenterId String Unique identifier of the datacenter "datacenter2"

nodeId String Unique identifier of the node "node3"

isMaster Boolean Identifies the master or worker node

type String Type of the Resource ("openstack", "kubernetes",
"openshift")

href String Hyperlink reference to the target specification

virtualCapabilities List of
Objects

A list of objects that represents the virtual
capabilities

 VirtualCapValueType String CPU, storage, RAM, etc

 VirtualCapValue Object Values of the value type

 VirtualCapUnit String Unit of measure: Gb, MHz, SO version, etc

A resource can belong to any of the following subtypes (also depicted in Figure 6-1.):

• InformationResource,

• SpectrumResource,

• PhysicalResource,

• LogicalResource,

• VirtualResource,

• NetworkFunction.

The InformationResource is basically a holder of information [5]. Such information may be an Application
Descriptor, a Virtual Compute Descriptor, a Software Image Descriptor, a Network Slice Template, a VNF
Descriptor (VNFD) or a Network Service Descriptor (NSD), as represented by the respective subclasses in
Figure 6-1. An Application Descriptor (ApplicationDescriptor class) is a part of an application package and it
is usually provided by the application provider. The ApplicationDescriptor expresses the application
requirements and rules of an application [6]. In regard with the Virtual Compute Descriptor
(VirtualComputeDesc class), it supports specification of requirements related to virtual compute resources,
such as virtual memory, CPU and disk requirements. For example, the virtual compute resources defined by
such a descriptor could be used by a VNF when each of the VNF Component (VNFC) instances of the VNF is
intended to be deployed in a single VM [7]. Similarly, to VirtualComputeDesc, the Software Image Descriptor
(SoftwareImageDesc class) defines descriptors of software images to be used, for instance by a VNF for a VM-
based VDU, an Operating System (OS) Container or a virtual storage resource [7]. A Generic Network Slice
Template (GST) (GenericNetworkSliceTemplate class) contains a set of attributes that can characterize a type
of network slice. One or more Network Slice Instances (NSIs) can be created out of the same type based on
the requirements. GST is generic and is not tied to any specific network deployment [10]. The information
model of the Network Slice is explicitly detailed in Section 8.5. The VNFD [7] and the NSD classes describe
specific deployment versions of a VNF and an NS, while the information models for VNFs and NSs are
presented in Sections 8.4 and 8.5, respectively.

The SpectrumResource Information Model is analysed in Section 8.1.

The PhysicalResource is an abstract base class defining different types of hardware that may or may not be
packaged as part of a Product. By definition, a PhysicalResource is a representation of a physical object, such
as Chassis, Rack, Cable Duct, etc. Generally speaking, hardware resources do not have the ability to
communicate by electronic means. However, they can be used to hold Logical Resources (LogicalResource
class) and/or Virtual Resources (VirtualResource class) that communicate with other entities. In other words,
a PhysicalResource provides a means for containing a LogicalResource that does give status and other
information that is associated with the PhysicalResource. For example, a Rack could have a door mounted
with an electronic sensor that detects when it is open or closed [5]. The Antenna, the MEC Host (MECHost

Page 113 of 152

class) and the Transport Resource (TransportResource class) are subclasses of the PhysicalResource. The
complete class diagram of the PhysicalResource is illustrated in Figure 6-2.

Figure 6-2: PhysicalResource Class Diagram

MECHost describers a MEC-enabled networking edge node. MEC hosts are located at the network edge and
simultaneously provide networking, storage and computational services, such as Internet access, video
content delivery, caching etc. Each edge node is equipped with a set of networking, storage and
computational capabilities, usually measured in terms of number of Resource Blocks (RBs), megabytes, and
billions of instructions per second (GIPS), respectively [11]. Examples of MEC-enabled networking edge nodes
are the Internet of Things (IoT) Gateways, the Access Points (APs) and the Base Stations. These are shown as
subclasses of MECHost in Figure 6-2. Focusing on Access Points (AccessPoint class), this refers to the access
technologies that can be supported, for instance, by a Network Slice. Some examples are the access points
for fixed access (such as Ethernet, Fibre and DSL APs), 3G, 4G, 5G, Wi-Fi, New Radio (NR), Long Term Evolution
for Machines (LTE-M), Narrowband IoT (NB-IoT) and Bluetooth [10].

The LogicalResource is an abstract class for representing resources that are of interest to the managed
environment and are not virtualized. Basically, it describes logical aspects of devices (e.g., services). A
LogicalResource can (but does not have to) be packaged as part of a Product [5]. A LogicalNode is a subclass
of LogicalResource and describes compute, memory and input/output (I/O) requirements that are to be
associated with the logical node of infrastructure. The logical node requirements are a subcomponent of the
Virtual Deployment Unit (VDU) level requirements [7].

A VirtualResource is the result of applying one or more Software Processes to a Resource to create one or
more new Resources whose assets (e.g., memory) and services (e.g., networking) can be shared among
multiple, possibly heterogenous, consumers. In other words, a VirtualResource is an abstraction that
decouples physical manifestation & delivery of a Resource from its logical operation. In particular, it could be
used in conjunction with a virtualization process to create virtual compute, virtual network and virtual
storage. A virtualized CPU is an example of VirtualResource. As shown in Figure 6-1, a VirtualResource must
be hosted by a PhysicalResource and can (but does not have to) be packaged as part of a Product [5]. Figure
6-3 further analyses the subclasses of Virtual Resource.

Figure 6-3: VirtualResource Class Diagram

Page 114 of 152

The VirtualStorage class specifies the requirements related to persistent virtual storage resources. The
BlockStorage, FileStorage and ObjectStorage classes specify the details of a block storage resource, a file
storage resource and an object storage resource, respectively [7]. Ephemeral virtual storage is specified in
VirtualComputeResource class [7]. The VirtualComputeResource supports the specification of requirements
related to virtual compute resources [7]. A Virtual Compute Resource can be characterised by a Virtual
Memory (VirtualMemory class) and a Virtual CPU (VirtualCPU class). The VirtualMachine class describes the
properties of a VM, while an OsContainer class describes the members properties of a set of co-located
container compute resources when these are realizing a VDU [7].

The NetworkFunction class represents the concept of a Functional Block. It can represent either stand-alone
(NetworkFunctionAtomic instances) and/or composite (NetworkFunctionComposite instances) objects. It is
related to other model elements (specifically with the LogicalResource, VirtualResource, and
InformationResource classes). A NetworkFunction is an element within a network with well-defined external
interfaces and functional behaviour, such as a DHCP, a Firewall, a SAE Gateway, an MME or an eNodeB [5].

6.2.2 Service Model

A high-level representation of the Service model class diagram is shown in Figure 6-4, while its Information
Model is analysed in Table 6-8.

Figure 6-4: Service Model Class Diagram

Table 6-8: Service candidate Information Model [12]

Parameter Type Description Example

id String Unique identifier "4994"

didRef DID Distributed identifier of the
Service

category List of service category
references
(ServiceCategoryRef)

List of categories for this
service offer.

See Table 6-9

href String Hyperlink reference to this
service

"https://hostname:port/ser
viceCatalogManagement/v3
/serviceOffer/4994"

description String Description of this service "This service offer allows
provision of TV service"

lastUpdate DateTime Date and time of the last
update of this service

"2020-08-27T00:00"

lifecycleStatus String Used to indicate the current
lifecycle status of the service

"Active"

name String Name of the service "TVServiceOffer"

serviceSpecification A service specification
reference
(ServiceSpecificationRe
f)

The service specification
implied by this offer

See Table 6-10

version String The version of service "2.1"

Page 115 of 152

validFor TimePeriod The period for which this
service offer is valid

"startDateTime": "2020-08-
23T00:00", "endDateTime":
"2021-03-25T00:00"

baseType String When sub-classing, this
defines the super-class

schemaLocation Uri A URI to a JSON-Schema file
that defines additional
attributes and relationships

"https://hostname:port/sch
ema/Service/ServiceOffer.s
chema.json"

type String When sub-classing, this
defines the sub-class entity
name

"ServiceOffer"

serviceOwnerDID DID DID of the service owner

Table 6-9 shows the Information Model for the ServiceCategoryRef. The service category resource is used to
group service offers in logical containers. Categories can contain other categories [12].

Table 6-9: ServiceCategoryRef Information Model [12]

Parameter Type Description Example

id String Unique identifier of category "5980"

href String Hyperlink reference to the category "https://hostname:port/serviceCatalog
Management/v3/serviceCategory/5980
"

name String Name of the category "TV"

baseType String When sub-classing, this defines the
super-class

"Category"

schemaLocation Uri A URI to a JSON-Schema file that defines
additional attributes and relationships

"https://hostname:port/schema/Service
/ServiceCategory.schema.json"

type String When sub-classing, this defines the sub-
class entity name

"ServiceCategory"

referredType String The actual type of the target instance
when needed for disambiguation

"ServiceCategory"

Tables Table 6-10 and Table 6-11 show the Information Models for the ServiceSpecificationRef and the
associated TargetServiceSchema, respectively.

Table 6-10: ServiceSpecificationRef Information Model [12]

Parameter Type Description Example

id String Unique identifier of the service
specification

"9600"

href String Reference of the serviceSpecification "https://hostname:port/serviceC
atalogManagement/v3/serviceSp
ecification/9600"

name String Name of the
requiredServiceSpecification

"CFSS_TV"

targetServiceSchema TargetServic
eSchema
(Table 6-11))

The reference object to the schema
and type of target service which is
described by service specification

See Table 6-11

version String Service specification version "2.1"

baseType String When sub-classing, this defines the
super-class

"ServiceSpecification"

https://hostname:port/serviceCatalogManagement/v3/serviceSpecification/9600
https://hostname:port/serviceCatalogManagement/v3/serviceSpecification/9600
https://hostname:port/serviceCatalogManagement/v3/serviceSpecification/9600

Page 116 of 152

schemaLocation Uri A URI to a JSON-Schema file that
defines additional attributes and
relationships

"https://hostname:port/schema/
Service/CustomerFacingServiceSp
ecification.schema.json"

type String When sub-classing, this defines the
sub-class entity name

"CustomerFacingServiceSpecifica
tion"

referredType String The actual type of the target instance
when needed for disambiguation

"ServiceSpecification"

Table 6-11: TargetServiceSchema Information Model [12]

Parameter Type Description Example

baseType String When sub-classing, this defines the super-class

schemaLocation Uri This field provides a link to the schema describing
the target service.

"https://hostname:portschema/S
ervice/RFS.schema.json"

type String Class type of the target service "RFS"

Figure 6-4 distinguishes three types of services, the Customer Facing Services (CFS), the Resource Facing
Services (RFS) and Network Services.

A CFS is a service that is obtained as a Product by a Customer. Therefore, the Customer may have specific
control over this Service via its associated Product. CFSs are associated with resource technology neutral
services. This means that they describe general capabilities and have attributes that are general across many
technologies. Examples of such attributes are throughput, latency, loss rate and availability [15]. A CFS is
supported by one or more RFSs, as indicated by the CFServiceRequiresRFServices aggregator in Figure 6-4 [5].

However, the Customer never knows explicitly which RFSs are being used to support a CFS. More importantly,
the Customer shouldn’t have to know which RFSs are being used, since the Customer hasn’t explicitly
obtained them. RFSs are associated with resource technology specific services, which indicates that they
have attributes that predominately relate to a specific technology [15]. The RFRequiresNSs aggregator
defines the NetworkServices that a given RFS has [5].

A NetworkService is defined using the composite pattern. Therefore, NSAtomic and NSComposite are the
leaf and composite parts of this pattern, respectively [5]. Generally, a NetworkService should be able to
represent CFSs, as indicated by the NSProvidesCFS aggregator in Figure 6-4 [5].

6.3 Smart Contract information model

Due to the unique nature of R3 Corda’s architecture, the following information model definitions encapsulate
the contract state (information model), but also the flows and associated state changes and constraints to
aid understanding and intention.

Because model data is persisted in various off-chain repositories, where possible, the Corda models reflect a
decision to reduce duplication. Instead, immutable non-repudiation of data stored on the ledger will be
achieved through the storage of hashes on the DLT and pointers to the off-chain resource.

6.3.1 Product Offering

Product offers are published to the DLT along with their associated terms, SLAs etc., which are then
synchronised across trading stakeholders (providers & consumers). Below is the definition of
ProductOffering state object and the associated flows (and constraints) for managing its lifecycle.

Page 117 of 152

Table 6-12: Product Offering Information Model

Parameter Type Description

identifier UniqueIdentifier / DID A Corda identifier made up of a Corda specific UUID and
an “external id” -> the DID of the offer

name String The name of the resource

places List<PlaceModel> Geographical places of significance to the offer

productOfferTerms List<ProductOfferTerms> Terms such as licensing associated with the offer

prices List<ProductPriceOfferings> Prices associated with the offering

serviceCandidate ServiceCandidate The specification of the service

serviceLevelAgreements List<SLA> List of SLAs defined for the offer

owner Party Corda Party is a Node identity

Below is a sequence diagram that identifies the actions (flows) and participants for product offerings. Once
a provider has published a product offer it is synchronised across all trading participant nodes so that it can
be added to their respective catalogue. Providers can also update and retire product offers, which are again
synchronised with trading stakeholders.

6.3.2 Product Order

The publishing of a product order to the ledger is the initiation of agreement negotiation. The order is
encapsulated by a ProductOrder contract state and governed by a Product Order Contract to enforce
business rules over the contract.

A product order contract state does not duplicate the model definitions, rather the product order model is
serialized, and an attachment is created and referenced in the contract state. A hash of the model also forms
part of the contract state for simple detection of changes to the contract model (attachment).

Table 6-13: Product Order Information Model

Parameter Type Description

identifier Unique Identifier /
DID

A Corda identifier made up of a Corda specific UUID and an “external id” ->
the DID of the offer

modelHash String A hash of the product order model

model AttachmentRef() A reference to an attachment ofject containing the full product order
specification

validFor TimePeriod A start and optional end date for the lease of the products on the order

seller Party A Corda node identity

buyer Party A Corda node identity

didInvitations Map<DID,
Invitation>

A map of invitations for each product in the order to allow consumers to
establish DID agent connections

Below is a sequence diagram that identifies the actions (flows) and participants for product orders. Once a
consumer has published a product order, a provider will be able to perform the necessary checks to
determine if the request is serviceable. If it is, then they will accept the order, or failing that, reject it with a
reason. Acceptance of an order will mean both parties enter the agreement and during the lifetime of the
agreement participants can propose changes and terminate it as they see fit.

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 118 of 152

Figure 6-5: Product Offering Object

Page 119 of 152

Figure 6-6: Product Offerings Actions

Page 120 of 152

Figure 6-7: Product Order Object

Page 121 of 152

Figure 6-8: Product Order Actions

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 122 of 152

6.3.3 SLA Violation

When an SLA violation has been detected, this is recorded on the DLT. It references the product order, SLA
and specific rule that was violated as well as the recorded – violating – value. Key to the acceptance of the
transaction will be the signing by a DID Agent Oracle, whose role is to enforce that the violation state has
been generated by the permitted monitoring service. Should the oracle determine that the generating
monitoring entity is not permitted, then the transaction will be rejected.

Table 6-14: SLA violation Information Model

Parameter Type Description

productOrderRef StaticPointer A pointer to the ledger state of the product order to which the violation
relates

monitoringServiceId DID The identifier of the monitoring service recording the violation

actualValue String The value recorded

slaId String DID of the SLA in question

ruleId String DID of the rule breached

Figure 6-9: SLA Violation Object

The below sequence diagram depicts the expected flow of events on the DLT when publishing an SLA
Violation to the ledger.

Page 123 of 152

Figure 6-10: SLA Violation Flow

6.3.4 License Terms

If a product order has license terms associated with it then a LicenseTerms contract state (governed by a
LicenseTerms contract) will be published to the ledger in order to track the lifecycle of any licensing actions.
The below figure illustrates the contract state object and associated flows for state transitions:

Table 6-15: License Terms Information Model

Parameter Type Description

identifier Unique
Identifier

A Corda identifier made up of a Corda specific UUID and an “external id” ->
the DID of the offer

productOrderRef Static Pointer A pointer to the ledger state of the product order to which the violation
relates

productOfferId String DID of the offer to which these license terms relate

type Enum The type of license.

Example: SUB | LIMIT | PAYG

amountLimit Integer The max instances/users etc permitted

durationLimit Duration An optional duration for the license

current Integer A current record of provisioned instances/users

lastUsageCalculation Duration Period usage was last calculated over

amountTypeEnum Enum The type of unit to which the current and amountLimit fields relate
Example: USERS | INSTANCES

Page 124 of 152

Figure 6-11: contract state object and associated flows

Page 125 of 152

7 Conclusions

This report provides a detailed architecture for the 5GZORRO data-driven solution for DLT and distributed
intelligent resource discovery and management. Specifically, this deliverable describes the Marketplace, the
Governance and the Cross-domain Analytics & Intelligence for AIOps. This report describes the key
interactions of their constituent modules to implement the envisaged Zero-Touch SLA Smart Contract,
resource discovery, allocation and provisioning services offered by 5GZORRO platform.

The architecture presented in this document is based on deliverable D2.2, where the 5GZORRO high-level
reference architecture was introduced. In this document we go to the next level of detail, beyond D2.2, to
specify the 5GZORRO components.

The outputs of this deliverable will serve as input for the implementation work that will be carried out in
deliverables D3.2 (Prototypes of evolved 5G Service layer solutions) and D4.3 (Final prototype of Zero Touch
Service Management with Security and Trust), as well as WP5 (Validation through Use Cases).

7.1 Deliverable contribution to 5GZORRO objectives and KPIs

We summarize in this section how our various objectives are met by the design discussed in this document.
Each objective is expanded out into its sub-objectives, and we point to the sections in the document that
address the issue in the sub-objective.

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 126 of 152

Table 7-1: D3.1 contribution to 5GZORRO objectives and KPIs.

OBJECTIVE Target KPIs Applicable Design Artifact

OBJ-1. Define a system level
architecture combining zero-touch
automation solutions and distributed
ledger technologies to enable a
secure, flexible and multi-stakeholder
combination and composition of
resources and services in 5G
networks.

• Support actual distributed multi-party service and business configurations
(KPI target: more than 3 providers/operators of virtualized resources or
services for spectrum, radio/edge/core compute & network).

3.3 Legal Prose Management,
5.4 Intelligent SLA Monitoring
and Breach

• Inject and process operational service data (configurations and runtime
monitoring and logging) into a multi-party 5G Operational Data Lake (KPI
target: at least 10 heterogeneous and diverse operational data sets streamed
into 5G Operational Data Lake from various data sources, at least one per
provider/operator).

5.1 Baseline Data Lake
Platform, 5.2 Service &
Resource Monitoring, 5.3
Monitoring Data Aggregator,
5.4 Intelligent SLA Monitoring
and Breach

• Expose open APIs to application layer for processing operational data for
analytical processes, which discover and “inventorize” various types of
resources (KPI target: all external 5GZORRO APIs are exposed via open and
public specifications).

5.5 Smart Resource and
Service Discovery application

• Automate the overall service lifecycle management with seamless use of
heterogeneous virtualization platforms (i.e., VMs and containers,
interconnected with various levels and forms of service meshes) across
different providers (KPI target: completion of end-to-end provisioning in less
than 5 mins, service deletion in less than 1 min).

D4.1

• Support a real-time market for dynamic spectrum allocation allowing
business agents to trade on spectrum allocations in space and time (KPI
target: Time from transaction to spectrum availability in less than 10
minutes; support of 5GNR, LTE and WiFi technologies).

3.2 Identity and Permissions
Manager, 4.1 Resource and
Service Offer Catalogue

OBJ-2. Design and prototype a
security and trust framework,
integrated with 5G service
management platforms, to
demonstrate Zero-Day trust
establishment in distributed multi-
stakeholder environments and
automated security management to
ensure trusted and secure execution

• Provide mechanisms for zero touch trust automation in multi-domain
scenarios on top of a 5G service management framework (KPI target: to cover
up to 4 different stakeholders as part of the automated trust establishment
process and to enable its automatic renegotiation when a stakeholder is
joining or leaving the trust link).

2.1 DLT for Smart Contracts
and Resource offering, 02.2
DLT for distributed identities,
3.1 DLT Governance
Manager, 3.2 Identity and
Permissions Manager

• Enhance a 5G service management framework enabling the detection of
security vulnerabilities and compromises and the provision of a set of
potential countermeasures to mitigate them using a zero-touch approach
(KPI target: identifying 6 different types of common attacks to software

D4.1

Page 127 of 152

OBJECTIVE Target KPIs Applicable Design Artifact

of offloaded workloads across
domains in 5G networks

infrastructures and provide a complete set of countermeasures -filter traffic,
divert it to a honeynet, send an alert to the system admin, etc.- for each of
them).

• Support the integration of zero trust hardware platforms (TEE - Trusted
Execution Environments) as a root of trust for the monitoring of information
and the establishment of end-to-end secure communications enabling critical
workloads to go across different tenants and different stakeholders (KPI
target: research on the integration evolution of three TEE platforms --one
provided by a project partner-- and two other commercial ones to support a
fast and secure establishment of end-to-end cross-slice communications for
critical workloads).

D4.1

OBJ-3. Define a Smart Contract
ecosystem anchored on a native
distributed ledger to allow
commercial and technical data
provided by 3rd-party users to be
standardised and mapped into Smart
Contracts, which can be initiated “at
will” between multiple untrusted
parties.

• Ability for untrusted parties to negotiate, set-up and operate a new
technical/commercial relationship via a Smart Contract for 3rd-party
resource leasing/allocation with associated SLA (KPI target: Smart Contract
for 3 or more untrusted parties).

2.1 DLT for Smart Contracts
and Resource offering, 3.3
Legal Prose Management, 4.1
Resource and Service Offer
Catalogue, 4.2 Smart
Contracts Lifecycle Manager,
5.4 Intelligent SLA Monitoring
and Breach

• Availability of an Oracle data layer to enable external data sources,
processing and results to be requested by SLA smart contracts (KPI target:
Oracle data layer accessed by 3 or more parties).

2.1.2 Oracles

• Enable off-chain processing of transactions through payment channels using
smart contract in order to enable faster and cheaper transactions compared
to on-chain (KPI target: Twice the number of transactions performed over on-
chain).

Part of the Smart Contract
DLT capabilities
2.1.2

OBJ-4. Define solutions for secure,
automated and intelligent resource
discovery, brokerage and selection,
operation with SLA to facilitate
workload offloading to 3rd-party
resources supporting pervasive
computing across multiple 5G
domains.

• Automatically discover and “inventorize” various types of resources (i.e.,
compute, storage, network at core, edge, far-edge), spectrum and services
capabilities from different domains and service providers (KPI target:
distribution of resource updates and discovery in less than 10 mins).

4.1 Resource and Service
Offer Catalogue, 4.2 Smart
Contracts Lifecycle Manager,
5.5 Smart Resource and
Service Discovery application

• Implement/correlate technical service configurations and SLA monitoring
interactions between multiple parties (KPI target: SLA measurements and
validation from at least 3 operators involved in a multi-party service chain).

5.4 Intelligent SLA
Monitoring and Breach

Page 128 of 152

OBJECTIVE Target KPIs Applicable Design Artifact

• Support intent-based API to guide the AI-driven resource discovery system
(KPI target: open 5GZORRO API specification for resource discovery).

5.5 Smart Resource and
Service Discovery application

OBJ-5. Define and prototype a secure
shared spectrum market to enable
real-time trading of spectrum
allocations between parties that do
not have a pre-established trust
relationship.

• Time to process and enforce new spectrum transactions (i.e., from the
moment the transaction is settled until the spectrum becomes available) (KPI
target: complete new spectrum transactions in less than 10 minutes).

2.1N/A

• Number of transactions per second handled by the market, which will
determine the volume of spectrum transactions processed by the market (KPI
target: 20 transactions/second).

N/A

• The authenticity of the market agents, preventing double spending that
would allow an agent to trade spectrum rights that it does not own (no
explicit KPI target: verification of the built-in property of Blockchains).

3.1 DLT Governance
Manager, 3.2 Identity and
Permissions Manager, 4.1
Resource and Service Offer
Catalogue

• Linkability between market agents and their associated radio access points,
which will allow to provide the appropriate spectrum rights to each access
point (KPI target: <10M cell towers should be linkable by the system, which is
a reasonable EU nation-wide deployment).

N/A

• Ability to enforce the settled spectrum rights and obligations, which will build
on lightweight Trusted Execution Environments (TEE) embedded in the radio
access points to ensure that the reported spectrum measurements are
faithful, and the spectrum allocations settled in the market are enforced (KPI
target: Be able to detect spoofing attacks where a base station uses an
allocation not authorized by the market).

D4.1

• Agnostic support of various radio technologies, to ensure that the market will
work regardless of the considered radio technology (KPI target: 5GNR, LTE
and WiFi will be supported).

N/A

OBJ-6. Realize a cloud-friendly
network software licensing
framework for location independent
network appliances execution.

• Enable the creation of license agreement templates associated to VNF/NS
instances (KPI target: create templates attached to eContract detailing
name, context, license conditions, negotiation goal and constraints).

3.3 Legal Prose Management

• Generate vendor independent license token to manage location independent
VNFs from 3rd party edge to core datacenter (KPI target: license service
creates generic tokens to latter run any vendor VNF across at least 2 network
segments).

D4.1

Page 129 of 152

OBJECTIVE Target KPIs Applicable Design Artifact

• Instantiate Network Services with VNFs from diverse providers (KPI target:
use eContract to include VNF licensed by at least 3 different providers).

D4.1

OBJ-7. Validate the 5GZORRO zero-
touch automation, security and trust
in relevant use cases for the
implementation of Smart Contracts
for Ubiquitous
Computing/Connectivity, Dynamic
Spectrum Allocation, and Pervasive
virtual CDN services over 3rd-party
edge resources.

No specific target to be covered by architecture design N/A

OBJ-8. Ensure the long-term success
of the project through
standardization and dissemination in
scientific, industrial, and commercial
fora, and by contributing to relevant
open source communities & SDOs
also exploring synergies with other
EU initiatives and projects.

No specific target to be covered by architecture design

5GZORRO Grant Agreement No. 871533 Deliverable D3.1 – version 1.2

Page 130 of 152

8 Appendix: Examples of offer types Information
Elements

This section introduces some examples of Information Models for specific types of product offers. The
product offers analysed in the next paragraphs are offers for spectrum, cloud, RAN and VNF/CNF resources
as well as for network slice and services. These Information Models are based on the general resource and
service models illustrated in Section 6.2 and the product offer model explained in Section 6.3.1.

8.1 Information model for Spectrum product offers

The spectrum offer information model is used to indicate the characteristics, such as physical frequency and
geographical location, of a licensed spectrum product offering.

Table 8-1: Spectrum Product Offering Information Model

Parameter Type Description Example

id String Unique identifier for the spectrum
product offering in the Catalogue

“BCNxx77”

href DID Distributed identifier of the spectrum
product offering

name String A name given to the spectrum product
offering

“BCNxx77”

description String A string to describe the spectrum product
offering

“A xx MHz
spectrum
resource in
band 77 in
Barcelona”

validFor Time Period [9]

 startDateTime String The time instant the spectrum offering
starts

"2020-08-
23T00:00"

 endDateTime String The time instant the spectrum offering
expires

"2021-07-
22T23:59"

lastUpdate String The last time the spectrum offering was
updated

"2020-08-
22T10:00"

lifecycleStatus String Used to indicate the current lifecycle
status (e.g., Active, inactive)

“Active”

place List of
GeographicLocation
objects [16]

A list of place references to
GeographicLocation objects indicating
where the spectrum resource is being sold

 id String An id for the geographical location

 href String Reference to the GeographicLocation

 name String A human-readable description of the
GeographicLocation

“Barcelona”

serviceLevelAgreement Object A reference to the SLA descriptor for
Spectrum Products (see Table 8-3)

 id String An id for the SLA

 href String Reference to the SLA

Page 131 of 152

 name String A human-reading description of the SLA “Spectrum SLA
by Telefónica of
Spain”

resourceCandidate Object Reference to the spectrum resource
candidate in the catalogue (the spectrum
resource in TM Forum format)

 id String The id of the spectrum resource candidate

 href String DID of the spectrum resource candidate

 name String A human-readable description of the
spectrum resource candidate

category

 name String The type of resource “Spectrum”

productOfferingTerm List of objects A condition under which a
ProductOffering is made available to
Customers. For instance, a
productOffering can be offered with
multiple commitment periods

 name String A human-readable name for the spectrum
product offering term

 description String A description of the spectrum product
offering term

 duration Quantity [9] (one
object)

 amount Integer The number of units of the time duration 1

 units String Time units, e.g., Days, Weeks, Months,
Years, etc

“Month”

 validFor Time Period [9]

 startDateTime String The time instant this spectrum offering
term starts

"2020-08-
23T00:00"

 endDateTime String The time instant this spectrum offering
term expires

"2021-07-
22T23:59"

productOfferingPrice List of objects The price that is asked for the spectrum
product offering

 id String The id of the spectrum product offering
price

 href String The reference for the spectrum product
offering price

 name String A human-readable name for the spectrum
product offering price

The spectrum offer is modelled for a specific number of geographic locations. Based on [16], Table 8-2shows
the information model used to describe a geographic location. A Geographic Location is a point, a surface or
a volume defined by a group of geographic point(s). These points must be associated with a certain level of
accuracy and a spatial reference.

Table 8-2: GeographicLocation Information Model

Parameter Type Description Example

id String Unique identifier of the geographic
location in the Catalogue

“8980”

href DID Distributed identifier of the spectrum
product offering

name String A name given to the geographical
location

“Barcelona”

Page 132 of 152

geometryType String Type of the geographic location - one
of: point, line, graph, ring polygon

“Polygon”

accuracy String Accuracy of the coordinate specified “”

spatialRef String Geocoding referential “WGS84”

geometry List of GeoPoints List of Geographical Points or
GeoPoints. A GeoPoint defines a
geographic point through coordinates

 x String x coordinate (usually latitude) “1.430937”

 y String y coordinate (usually longitude) “43.597208”

 z String z coordinate (usually elevation) “”

The approved SLA is described in terms of SLA rules which contains the metrics, their related values or range,
thresholds, valid period or date, consequences in case of violation of any clause of the SLA. It is also assumed
that all the metrics are the existing ones which are stored in the 5GZORRO’s “Metrics Library” with their
attached references. Besides, each metric is attached to a given Product in the Catalogue with a dedicated
reference (DID).

Table 8-3: Spectrum Product Service Level Agreement Information Model

Parameter Type Description Example

id String Unique identifier of the SLA

name String Name of the SLA “Spectrum SLA”

description String Description of the SLA “The spectrum SLA
provided by Telefónica of
Spain and the Spanish
National Regulator”

validityPeriod Time Period The period when the clauses of the SLA are
applicable

 startTime String Date/Time of the beginning of the
validityPeriod

"2020-08-23T00:00"

 endTime String Date/Time of the end of the validityPeriod "2021-07-22T23:59"

template SLA template characteristics

 name String Name of the template

 href String Reference of the template

 description String Description of the template

relatedParty Parties engaged in the SLA (Regulator,
Spectrum Resource Provider)

 role String Role attached to each party “Regulator”

 href String DID of the party

state String SLA state

approved Boolean Indicates if SLA is approved (true) or not
(false)

true

rule Common pattern or Template of SLA
parameter

 id String Unique identifier of the metric

 metric String Reference of metric stored in the Service
Provider “metrics library,” which might
include, but not limited to, transmission
power, interference level, radio coverage,
5G security,

“Transmission power”

 unit String Unit of measure of metric “dBm”

 referenceValue String Reference value of the metric “23”

 operator String Operator used when calculating the rule “”

 tolerance String Allowable variation of the metric +0%

Page 133 of 152

 consequence String Defines the action to take as a result of a
threshold crossing

Hlink to the contract
specifying the action
(SLA Violation rule?)

Table 8-4: Spectrum Product Offering Price Information Model

Parameter Type Description Example

id String Id of the spectrum product
offering price

name String A name given to the spectrum
product offering price

SpectrumOfferingPrice1

description String A description of the spectrum
product offering price

“This pricing describes the
recurring charging for a
spectrum resource”

validFor Time
Period [9]

 startDateTime String The time instant the spectrum
product offering price starts

"2020-08-23T00:00"

 endDateTime String The time instant the spectrum
product offering price expires

"2021-07-22T23:59"

priceType String Describes the price: recurring,
discount, allowance…

“Recurring”

recurringChargePeriodType String The period of the recurring
charge (e.g., 1)

12

recurringChargePeriodLength Integer The period to repeat the
charging of the price. Possible
values are Day, Week, Month,
Year, Hour, Minute, Never, etc.

“Month”

percentage Integer Discount on the price value 0

price Quantity

 unit String The price currency, e.g., “EUR.”
(ISO4217 norm uses 3 letters to
define the currency).

“EUR”

 amount Float A positive value determining the
amount of money

“10,000”

productOfferingTerm List of
objects

A list of conditions under which a
ProductOfferingPrice is made
available

 name String Name of the
productOfferingTerm

 description String Description of the
productOfferingTerm

“The Spectrum Offering
price will be available until
duration”

 duration Quantity Duration of the
productOfferingTerm

 amount Integer The number of units of the
duration of the
productOfferingTerm

“1”

 units String Time units, e.g., Days, Weeks,
Months, Years, etc

“Week”

 validFor Time
Period [9]

The period for which the
productOfferingTerm is valid

 startDateTime String The time instant this spectrum
product offering price starts

"2020-08-23T00:00"

Page 134 of 152

 endDateTime String The time instant this spectrum
product offering price expires

"2021-07-22T23:59"

pricingLogicAlgorithm

 id String Unique id of the
PricingLogicAlgorithm

 href String Hyperlink reference of this
PricingLogicAlgorithm

 name String Name given to the
PricingLogicAlgorithm

 description String Description of the
PricingLogicAlgorithm

 plaSpecId String Id of corresponding
PricingLogicAlgorithm
specification

 validFor Time
Period [9]

The period for which the
PricingLogicAlgorithm is valid.

 startDateTime String The time instant the
PricingLogicAlgorithm starts

 endDateTime String The time instant the
PricingLogicAlgorithm expires

tax

 taxAmount Quantity Amount of tax expressed in the
given currency

 unit String The tax currency. ISO4217 norm
uses 3 letters (EUR)

“EUR”

 value Float Numeric value 1,000

 taxCategory String Tax category. E.g., VAT “VAT”

 taxRate Integer Applied rate of the tax 10

Table 8-5: Spectrum resource ResourceCandidate Information Model

Parameter Type Description

id String Unique identifier in the catalogue

href DID Distributed identifier of the spectrum resource candidate

name String A name given to the spectrum resource candidate

resourceSpecification A list of
ResourceSpecificationRef
[9] elements

A reference to the spectrum resource
ResourceSpecification (see Table 8-6)

Table 8-6: Spectrum resource ResourceSpecification Information Model

Parameter Type Description

href DID Distributed identifier of the spectrum resource
specification

name String The name of the spectrum resource specification

resourceSpecCharacteristic List of
ResourceSpecCharacteristic
[9]

Description of the spectrum resource, starting
with the operation mode of the spectrum (TDD or
FDD) in Table 8-7, then followed by the start
(Table 8-8) and end (Table 8-9) downlink (DL)
frequencies, and, finally, the start (Table 8-10) and
end (Table 8-11) uplink (UL) frequencies. If the
spectrum resource is in TDD mode, DL and UL start

Page 135 of 152

frequency values must be the same, and the same
reasoning applies to the end frequency values. If
FDD operation, DL and UL bands cannot overlap.

Table 8-7: Spectrum operation mode ResourceSpecCharacterstic Information Model

Parameter Type Description

name String operationMode

description String The operation mode of the spectrum. The accepted values are
“TDD” or “FDD”

configurable Boolean False

validFor Time Period
[9]

Date of expiration of the current description

isUnique Boolean True

resourceSpecCharacteristicValue 1 object Spectrum operation modality object

 valueType String String

 value String “TDD” or “FDD”

Table 8-8: Start DL frequency ResourceSpecCharacterstic Information Model

Parameter Type Description

name String startFreqDl

description String The start DL frequency of the spectrum resource

configurable Boolean False

validFor Time Period [9] Date of expiration of the current description

isUnique Boolean True

resourceSpecCharacteristicValue 1 object

 valueType String Numeric

 value Float A central frequency value

 unitOfMeasure String Megahertz [MHz]

Table 8-9: End DL frequency ResourceSpecCharacterstic Information Model

Parameter Type Description

name String endFreqDl

description String The end DL frequency of the spectrum resource

configurable Boolean False

validFor Time Period [9] Date of expiration of the current description

isUnique Boolean True

resourceSpecCharacteristicValue 1 object

 valueType String Numeric

 value Float A central frequency value

 unitOfMeasure String Megahertz [MHz]

Table 8-10: Start UL frequency ResourceSpecCharacterstic Information Model

Parameter Type Description

name String startFreqUl

description String The start UL frequency of the spectrum resource

configurable Boolean False

validFor Time Period [9] Date of expiration of the current description

isUnique Boolean True

resourceSpecCharacteristicValue 1 object

Page 136 of 152

 valueType String Numeric

 value Float A central frequency value

 unitOfMeasure String Megahertz [MHz]

Table 8-11: End UL frequency ResourceSpecCharacterstic Information Model

Parameter Type Description

name String endFreqUl

description String The end UL frequency of the spectrum resource

configurable Boolean False

validFor Time Period [9] Date of expiration of the current description

isUnique Boolean True

resourceSpecCharacteristicValue 1 object

 valueType String Numeric

 value Float A central frequency value

 unitOfMeasure String Megahertz [MHz]

8.2 Information model for Cloud product offers

This section analyses the cloud product offer information model that is used in the 5GZORRO Marketplace
to describe the elements that compose the product to trade with. In Table 8-12 the fields that compose the
cloud product are depicted.

Table 8-12: Cloud Product Offering Information Model

Parameter Type Description Example

id String Unique identifier for the cloud
product offering in the
Catalogue

href DID Distributed identifier of the
cloud product offering

name String A name given to the cloud
product offering

description String A name to describe the cloud
product offering

Cloud resources
description

validFor Time Period [9]

 startDateTime String The time instant the cloud
offering starts

"2020-08-
23T00:00"

 endDateTime String The time instant the cloud
offering expires

"2021-07-
22T23:59"

resourceSpecification ResourceSpecificationRef
[9]

A reference to the cloud
resource ResourceSpecification
(see Table 6-5)

Page 137 of 152

8.3 Information model for RAN product offers

The RAN product offer information element is used to indicate the RAN infrastructure elements the RAN
infrastructure provider is sharing in the 5GZORRO architecture.

Table 8-13: RAN Product Offering Information Model

Parameter Type Description Example

id String Unique identifier for the RAN
product offering in the Catalogue

href DID Distributed identifier of the RAN
product offering

name String A name given to the RAN product
offering

description String A name to describe the RAN
product offering

"A RAN product
offering "

validFor Time Period [9]

 startDateTime String The time instant the RAN offering
starts

"2020-08-
23T00:00"

 endDateTime String The time instant the RAN offering
expires

"2021-07-
22T23:59"

lastUpdate String The last time the RAN offering was
updated

lifecycleStatus String Used to indicate the current
lifecycle status (e.g., Active,
inactive)

“Active”

place List of
GeographicalAddress
objects [17]

A list of place references to
GeographicAddress objects
indicating where the RAN resource
is being sold

 id String An id for the geographical location

 href String Reference to the
GeographicAddress

 name String A human-readable description of
the GeographicalAddress

“Barcelona”

serviceLevelAgreement Object A reference to the SLA descriptor.
The SLA information model for
RAN products is given in Table 8-15

 id String An id for the SLA

 href String Reference to the SLA

 name String A human-reading description of
the SLA

“Telefónica SLA”

category

 name String The type of resource “RAN”

productOfferingTerm List of objects A condition under which a
ProductOffering is made available
to Customers. For instance, a
productOffering can be offered
with multiple commitment periods

 name String A human-readable name for the
RAN product offering term

“RAN-BCN”

 description String A description of the RAN product
offering term

“Telefónica’s RAN
resources in
Barcelona”

 duration Object

Page 138 of 152

 amount Integer The number of units of the time
duration

“1”

 units String Time units, e.g., Days, Weeks,
Months, Years, etc

“Year”

 validFor Time Period [9]

 startDateTime String The time instant this RAN offering
term starts

"2017-08-
23T00:00"

 endDateTime String The time instant this RAN offering
term expires

"2018-08-
23T00:00"

productOfferingPrice List of objects The price that is asked for the RAN
product offering

 id String The id of the RAN product offering
price

 href String The reference for the RAN product
offering price

 name String A human-readable name for the
RAN product offering price

“RAN offering in
Barcelona”

Typically, the RAN infrastructure is composed of physical (non-virtual) resources that are deployed
somewhere. For this reason, the RAN offer shall include information describing the precise location of each
RAN resource of the RAN offer. This location information becomes essential when selecting the right RAN
resources for a service aiming at covering a specific geographic area. The RAN resource location information
consists of an address and, optionally, the geographic coordinates, as specified by the TMForum in its Address
Information Model [17]. Table 8-14 contains the different fields in the Address Information Model.

Table 8-14: Address Information Model [17]

Parameter Type Description Example

id String Unique identifier of the geographic
location in the Catalogue

“8980”

streetNr Integer Number identifying a specific
property on a public street. It may be
combined with streetNrLast for
ranged addresses

71

streetNrSuffix String The first street number suffix “”

streetNrLast Integer Last number in a range of street
numbers allocated to a property

“”

streetNrLastSuffix String Last street number suffix for a
ranged address

“”

streetName String Name of the street or other street
type

“Rambla del
Poblenou”

streetType String Alley, avenue, boulevard, brae,
crescent, drive, highway, lane,
terrace, parade, place, tarn, way,
wharf?

“”

streetSuffix String A modifier denoting a relative
direction

“”

locality String "An area of defined or undefined
boundaries within a local authority
or other legislatively defined area,
usually rural or semi rural in nature."
[ANZLIC-STREET], or a suburb "a
bounded locality within a city, town

“Poblenou”

Page 139 of 152

or shire principally of urban
character " [ANZLIC-STREET]

city String City that the address is in “Barcelona”

postcode String A descriptor for a postal delivery
area, used to speed and simplify the
delivery of mail

“08005”

stateOrProvince String The State or Province that the
address is in

“Catalonia”

country String Country that the address is in “Spain”

geoCode Geographic
coordinates

Geographic coordinates to point to
the address

 latitude String Latitude “1.430937”

 longitude String Longitude “43.597208”

 geographicDatum String Geocoding referencial “WGS84”

Table 8-15: RAN Product Service Level Agreement Information Model

Parameter Type Description Example

id String Unique identifier of the SLA

name String Name of the SLA

description String Description of the SLA “SLA for Telefonica’s RAN”

validityPeriod String The period when the clauses of the SLA
are applicable

 startTime String Date/Time of the beginning of the
validityPeriod

"2020-08-23T00:00"

 endTime String Date/Time of the end of the
validityPeriod

"2021-07-22T23:59"

template SLA template characteristics

 name String Name of the template

 href String Reference of the template

 description String Description of the template

relatedParty Parties engaged in the SLA (RAN
Resource Provider, RAN Resource
Consumer)

 role String Role attached to each party “RAN Resource Provider”

 href String DID of the party

state String SLA state

approved Boolean Indicates if SLA is approved (true) or
not (false)

true

rule Common pattern or Template of SLA
parameter

 id String Unique identifier of the metric

 metric String Reference of metric stored in the
Service Provider “metrics library”

“Transmission power”

 unit String Unit of measure of metric “dBm”

 referenceValue String Reference value of the metric “23”

 operator String Operator used when calculating the
rule

“”

 tolerance String Allowable variation of the metric +0%

 consequence String Defines the action to take as a result of
a threshold crossing

Hlink to the contract
specifying the action
(SLA Violation rule?)

Page 140 of 152

Table 8-16: RAN Product Offering Price Information Model

Parameter Type Description Example

id String Id of the RAN product offering price

href String Distributed identifier of the RAN
product offering price

name String A name given to the RAN product
offering price

description String A description of the RAN product
offering price

validFor Time Period
[9]

 startDateTime String The time instant the RAN product
offering price starts

"2017-08-23T00:00"

 endDateTime String The time instant the RAN product
offering price expires

"2017-08-29T00:00"

priceType String Describes the price: recurring,
discount, allowance…

“Recurring”

recurringChargePeriodType Integer The period of the recurring charge
(e.g., 1)

“1”

recurringChargePeriodLength String The period to repeat the charging of
the price. Possible values are Day,
Week, Month, Year, Hour, Minute,
Never, etc.

“Month”

lastUpdate String The last time the RAN product
offering price was updated

"2017-08-23T00:00"

lifecycleStatus String Used to indicate the current
lifecycle status (e.g., Active,
Inactive)

“Active”

isBundle Boolean It denotes if the RAN product
offering represents a single
productOffering (false), or a bundle
of productOfferings (true)

false

percentage Integer Discount on the price value “0”

price Quantity

 unit String The price currency (ISO4217 norm
uses 3 letters to define the
currency)

“EUR”

 amount Float A positive value determining the
amount of money

100.0

productOfferingTerm List of
objects

A list of conditions under which a
ProductOfferingPrice is made
available

 name String Name of the productOfferingTerm

 description String Description of the
productOfferingTerm

 duration Quantity Duration of the
productOfferingTerm

 amount Integer The number of units of the duration
of the productOfferingTerm

1

 units String Time units, e.g., Days, Weeks,
Months, Years, etc

“Year”

 validFor Time Period
[9]

The period for which the
productOfferingTerm is valid

 startDateTime String The time instant this RAN product
offering price starts

"2017-08-23T00:00"

Page 141 of 152

 endDateTime String The time instant this RAN product
offering price expires

"2018-08-23T00:00"

pricingLogicAlgorithm

 id String Unique id of the
PricingLogicAlgorithm

 href String Hyperlink reference of this
PricingLogicAlgorithm

 name String Name given to the
PricingLogicAlgorithm

 description String Description of the
PricingLogicAlgorithm

 plaSpecId String Id of corresponding
PricingLogicAlgorithm specification

 validFor Time Period
[9]

The period for which the
PricingLogicAlgorithm is valid.

 startDateTime String The time instant the
PricingLogicAlgorithm starts

 endDateTime String The time instant the
PricingLogicAlgorithm expires

tax

 taxAmount Quantity Amount of tax expressed in the
given currency

 unit String The tax currency. ISO4217 norm
uses 3 letters

“EUR”

 value Float Numeric value 10.0

 taxCategory String Tax category. E.g., VAT “VAT”

 taxRate Integer Applied rate of the tax 10

Table 8-17: RAN Product Specification Information Model

Parameter Type Description Example

id String Unique identifier for the RAN product
specification in the catalogue

href String Distributed identifier of the RAN product
specification

name String A name given to the RAN product
specification

“RAN product
xx”

description String A name to describe the RAN product
specification

“A RAN
Product
Specification”

isBundle Boolean It determines whether the RAN
productSpecification represents a single
productSpecification (false), or a bundle
of productSpecifications (true)

false

lastUpdate String The last time the RAN product
specification was updated

"2017-08-
23T00:00"

lifecycleStatus String Used to indicate the current lifecycle
status (e.g., Active, inactive)

“Active”

validFor Time Period [9]

 startDateTime String The time instant the RAN product
specification starts

"2017-08-
23T00:00"

 endDateTime String The time instant the RAN product
specification expires

"2018-08-
23T00:00"

relatedParty Object

Page 142 of 152

 id String Id of the related party

 href DID DID of the related party

 role String The role of the offering related party “RAN
provider”

 name String The name of the stakeholder providing
the RAN offer

“Telefónica of
Spain”

resourceSpecification A list of
ResourceSpecificatio
nRef elements [9]

A reference to the RAN resource
ResourceSpecification references (see
Table 8-18)

productSpecCharacteristic List of objects A list of objects defining the RAN. Will
match the RAN
resourceCandidateSpecCharacteristics in
Table 8-18

Table 8-18: RAN resource ResourceSpecification Information Model

Parameter Type Description Example

href DID Distributed identifier of the RAN
resource specification

name String The name of the RAN resource
specification

“A Telefonica
RAN Resource”

resourceSpecCharacteristic List of
ResourceSpecCharact
eristic [9]

Description of the RAN resource key
features that are relevant for the
definition of the applicable RAN range,
i.e., pairs of central frequency and
bandwidth Information Models (see
Table 8-19 and Table 8-20)

Table 8-19: Operation band ResourceSpecCharacteristic Information Model

Parameter Type Description Example

name String operationBand “n78”

description String In case of a cellular base station or
Wi-Fi access point, the supported
operation band (3GPP) or channel
(Wi-Fi). Will contain as many values
as supported

Operation in NR
band 78

configurable Boolean Denotes whether the operation band
is configurable or not. By default, the
modification of the operation band is
not permitted

false

validFor Time period [9] Date of expiration of the current
description

isUnique Boolean Denotes whether multiple Operation
band ResourceSpecCharacterstic
referred to the same RAN resource
can have the same value (false) or not
(true)

true

resourceSpecCharacteristicValue List of objects A list of operation band values

 valueType String The value type “Numeric”

 value Integer The band/channel number “78”

 unitOfMeasure String Integer “”

Page 143 of 152

Table 8-20: Quota ResourceSpecCharacterstic Information Model

Parameter Type Description Example

name String quota

description String The percentage of the passive
resources shared (e.g., backhaul link
capacity, baseband processing
capacity, etc.)

“Processing
capacity”

configurable Boolean Denotes whether the quota is
configurable or not. The purchase
might be smaller than the quota
(maximum value)

true

validFor Time period [9] Date of expiration of the current
quota description

isUnique Boolean Denotes whether the quota value is
unique or not

false

resourceSpecCharacteristicValue List of objects A list of quota values

 valueType String The type of the value “Numeric”

 value Float Quota value 20.0

 unitOfMeasure String The unit of measure “Percentage [%]”

Page 144 of 152

8.4 Information model for VNF/CNF product offers

Table 8-21: VNF ResourceCandidate Information Model

Parameter Type Description

id String Unique identifier in the catalogue

href DID Distributed identifier of the VNF resource
candidate

name String A name given to the VNF resource
candidate

resourceSpecification ResourceSpecificationRef [9] A reference to the VNF resource
ResourceSpecification (see Table 8-22)

Table 8-22: VNF resource ResourceSpecification Information Model

Parameter Type Description

href DID Distributed identifier of the VNF
resource specification

name String The name of the VNF resource
specification

resourceSpecCharacteristic List of ResourceSpecCharacteristic [9] Description of the VNF resource key
features (see Tables Table 8-23
through Table 8-35)

Table 8-23: vnfdId ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfdId

description String Unique identifier of the VNF Package that contains
this VNFD

configurable Boolean true (any modification of the content of the VNFD
or any other modification of the VNF Package shall
result in a new VNFD Identifier)

validFor Time
period [9]

Date of expiration of the current description

isUnique Boolean true

resourceSpecCharacteristicValue One object that represent the identifier

 valueType String UUID

 value String Identifier

Table 8-24: vnfProvider ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfProvider

description String Provider of the VNF and of the VNFD

configurable Boolean false

validFor Time
period [9]

Date of expiration of the current vnfProvider

isUnique Boolean true

resourceSpecCharacteristicValue One object that represent the provider

 valueType String String

 value String Provider’s name

Page 145 of 152

Table 8-25: vnfProductName ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfProductName

description String Name to identify the VNF Product

configurable Boolean false (Invariant for the VNF Product lifetime)

validFor Time period [9] Date of expiration of the current vnfProductName

isUnique Boolean false

resourceSpecCharacteristicValue One object that represent the VNF product name

 valueType String String

 value String VNF product name

Table 8-26: vnfSoftwareVersion ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfSoftwareVersion

description String Software version of the VNF

configurable Boolean true (This is changed when there is any change to
the software that is included in the VNF Package)

validFor Time period [9] Date of expiration of the current
vnfSoftwareVersion

isUnique Boolean false

resourceSpecCharacteristicValue One object that represent the VNF software version

 valueType String Version

 value String Version of the VNF

Table 8-27: vnfdVersion ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfdVersion

description String Specifies the version of the VNFD

configurable Boolean false

validFor Time
period [9]

Date of expiration of the current vnfdVersion

isUnique Boolean false

resourceSpecCharacteristicValue One object that represent the VNFD version

 valueType String Version

 value String Version of the VNFD

Table 8-28: vnfProductInfoName ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfProductInfoName

description String Human readable name for the VNF Product

configurable Boolean true (Can change during the VNF Product lifetime)

validFor Time
period [9]

Date of expiration of the current
vnfProductInfoName

isUnique Boolean false

resourceSpecCharacteristicValue One object that represent the VNFD version

 valueType String String

 value String VNF product info name

Page 146 of 152

Table 8-29: vnfProductInfoDescription ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfProductInfoDescription

description String Human readable description of the VNF Product

configurable Boolean true (Can change during the VNF Product lifetime)

validFor Time period
[9]

Date of expiration of the current
vnfProductInfoDescription

isUnique Boolean false

resourceSpecCharacteristicValue One object that represent the VNF product info
description

 valueType String String

 value String VNF product info description

Table 8-30: vnfdRef ResourceSpecCharacteristic Information Model

Parameter Type Description

name String vnfdRef

description String A reference to the VNF Descriptor

configurable Boolean false

validFor Time period [9] Date of expiration of the current vnfdRef

isUnique Boolean true

resourceSpecCharacteristicValue One object that represent the reference to the
VNF Descriptor

 valueType String String

 value String Reference to the VNF Descriptor

Table 8-31: localizationLanguage ResourceSpecCharacteristic Information Model

Parameter Type Description

name String localizationLanguage

description String Information about localization languages of the
VNF

configurable Boolean false

validFor Time period [9] Date of expiration of the current
localizationLanguage

isUnique Boolean False

resourceSpecCharacteristicValue A list of Strings that represents the localization
languages of the VNF

 valueType String String

 value String Localization language of the VNF

Table 8-32: configurableProperties ResourceSpecCharacteristic Information Model

Parameter Type Description

name String configurableProperties

description String Describes the configurable properties of the VNF
(e.g., related to auto scaling and auto healing)

configurable Boolean false

validFor Time period [9] Date of expiration of the current
configurableProperties

isUnique Boolean False

Page 147 of 152

resourceSpecCharacteristicValue A list of objects that represents the configurable
properties of the VNF

 valueType String ConfigurableProperty

 value Object Property + Boolean

Table 8-33: cpuRequirements ResourceSpecCharacteristic Information Model

Parameter Type Description

name String cpuRequirements

description String CPU requirements of the VM/ Virtualisation
Container/OS Containers realizing this VNF (vdu)

configurable Boolean False

validFor Time period
[9]

Date of expiration of the current
cpuRequirements

isUnique Boolean False

resourceSpecCharacteristicValue List of
Objects

A list of objects that represents the amount of
CPU required based on the particular deployment
modes

 valueType String CpuRequirementsDeployBased

 value Object Amount of CPU required + reference VDU/etc…

 unitOfMeasure String cpu_num * frequency [n * Ghz]

Table 8-34: memoryRequirements ResourceSpecCharacteristic Information Model

Parameter Type Description

name String memoryRequirements

description String Memory requirements of the VM/ Virtualisation
Container/OS Containers realizing this VNF (vdu)

configurable Boolean False

validFor Time period
[9]

Date of expiration of the current
memoryRequirements

isUnique Boolean False

resourceSpecCharacteristicValue A list of objects that represents the amount of
memory required based on the particular
deployment modes

 valueType String MemoryRequirementsDeployBased

 value Object Amount of Memory required + reference VDU/etc.

 unitOfMeasure String Memory size [GB]

Table 8-35: storageRequirements ResourceSpecCharacteristic Information Model

Parameter Type Description

name String storageRequirements

description String Storage requirements of the VM/ Virtualisation
Container/OS Containers realizing this VNF (vdu)

configurable Boolean False

validFor Time period
[9]

Date of expiration of the current
storageRequirements

isUnique Boolean False

resourceSpecCharacteristicValue A list of objects that represents the amount of
storage required based on the particular
deployment modes

 valueType String StorageRequirementsDeployBased

Page 148 of 152

8.5 Information models for Network Slice and Network Service product

offers

These information models are based on work from the TMForum Information Framework. Following the
TMForum service categories, network slices in 5GZORRO are mapped to Resource Facing Services (RFS) that
reference to infrastructure resource objects (modelling compute or RAN elements) required to establish the
considered network slice. Network services are abstracted as Customer Facing Services (CFS) that can be
acquired and consumed by other 3rd party domains. These service entities are supported by RFS including
network slices and VNF/CNF services.

Table 8-36 and Table 8-37 outline the main parameters of a network slice in the service catalogue, via the
ServiceCandidate and the ServiceSpecificationIM, which is adopted as (reusable) core building block to
assemble service catalogue and inventory entries in the 5GZORRO marketplace. Similarly, Table 8-38 and
Table 8-39 depict the ServiceCandidate and the ServiceSpecification of network services, respectively.

Table 8-36: Network slice ServiceCandidate

Parameter Type Description

id String Unique identifier in the catalogue (e.g., UUID)

href DID Distributed identifier of the network slice candidate

name String The name of the network slice candidate

resourceSpecification ResourceSpecificationRef A reference to the network slice ServiceSpecification

Table 8-37: Network slice ServiceSpecification Information Model

Parameter Type Description

id String Unique Service Specification id in the catalogue

href DID Distributed identifier of the network slice specification

name String The name of the network slice specification

serviceSpecCharacteristic List of
ServiceSpecCharacteristic

Description of the network slice characteristics
representing key features that are relevant for network
services to be supported by the slice. Note that
attributes here included (values, configurability, etc.)
are inherited from the resource’s specifications
associated to the slice.

Table 8-38: Network service ServiceCandidate Information Model

Parameter Type Description

id String Unique identifier in the catalogue

href DID Distributed identifier of the network service candidate

name String The name of the network service candidate

serviceSpecification ServiceSpecificationRef A reference to the network service ServiceSpecification

Table 8-39: Network service ServiceSpecification Information Model

Parameter Type Description

id String Unique Service Specification id in the catalogue

href DID Distributed identifier of the network service
specification

name String The name of the network service specification

Page 149 of 152

serviceSpecCharacteristic List of
ServiceSpecCharacteristic

Description of the network service characteristics
representing key features that are relevant for
customers obtaining this service via product offers.

By using the aforementioned service candidates and specifications, product offers are created to expose
network slices and network services available for discovery and purchase in the 5GZORRO Marketplace.
Relevant fields of the ProductOfferingInformation Model used for network slices and network services offers
are shown in Table 8-40 and Table 8-41, respectively.

Table 8-40: Network slice ProductOffering information model

Parameter Type Description

id String Unique internal id for the network slice offer in the
catalogue

href DID Distributed identifier of the network slice offer

name String Name of the network slice offer

agreement List of AgreementRef Agreements of the network slice provider with network
slice customers, for instance, service providers

place List of PlacRef Geographical places for which the network slice offer is
valid

productOfferingPrice List of
ProductOfferingPriceRef

Reference to the pricing models available for the network
slice offer.

serviceCandidate ServiceCandidateRef Reference to the network slice service candidate

productOfferingTerm List of
productOfferingTerm

Business conditions for which the network slice offer is
valid

serviceLevelAgreement List of SLA Ref Service Level Agreements available for the network slice
offer

Table 8-41: Network service ProductOffering information model

Parameter Type Description

id String Unique internal id for the network service offer in the
catalogue

href DID Distributed identifier of the network service offer

name String Name of the network service offer

agreement List of AgreementRef Agreements of the network service provider with network
service customers

place List of PlacRef Geographical places for which the network service offer is
valid

productOfferingPrice List of
ProductOfferingPriceRef

Reference to the pricing models available for the network
service product offer.

serviceCandidate ServiceCandidateRef Reference to the network service candidate

productOfferingTerm List of productOfferingTerm Business conditions for which the network service offer is
valid

serviceLevelAgreement List of SLARef Service Level Agreements available for the network
service offer

Page 150 of 152

9 References

[1] D2.2: Design of the 5GZORRO Platform for Security & Trust

[2] D2.1 5GZORRO Use Cases and Requirements Definition

[3] D4.1: Design of Zero Touch Service Management with Security & Trust Solutions

[4] Gartner, Market Guide for AIOps Platforms, Published 7 November 2019 – ID G00378587

[5] TM Forum, ZOOM Information Model Snapshot, TD234 Release 14.5.1, 2015

[6] ETSI GS MEC 010-2 V1.1.1, “Mobile Edge Computing (MEC); Mobile Edge Management; Part 2:
Application lifecycle, rules and requirements management” (2017-07)

[7] ETSI GS NFV-IFA 011 V4.1.1, “Network Functions Virtualisation (NFV) Release 4; ETSI, Zero-touch
network and Service Management (ZSM); Reference Architecture, GS ZSM 002 - V1.1.1, August 2019.

[8] ETSI, Zero-touch network and Service Management and Orchestration; VNF Descriptor and Packaging
(ZSM); Means of Automation, GR ZSM 005 - V1.1.1, May 2020.

[9] Resource Catalog Management API REST Specification” (2020-11), TM Forum Specification, TMF634,
Release 17.0.1, December 2017.

[10] GSM Association, Official Document NG.116 - Generic Network Slice Template, 2019

[11] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi and T. Melodia, "Sl-EDGE: Network Slicing at the
Edge", ACM Mobihoc 2020

[12] Service Catalog Management API REST Specification, TM Forum Specification, TMF633, Release 18.5.0,
January 2019.

[13] Product Catalog Management API REST Specification, TM Forum Specification, TMF620, Release
19.0.0, July 2019.

[14] Product Ordering Management API REST Specification, TM Forum Specification, TMF622, Release
19.0.1, November 2019.

[15] TM Forum, ODA Production Implementation Guidelines, GB999, Version 4.0.1, 2020

[16] Geographic Location API REST Specification, TM Forum Specification, TMF675, Release 17.5.1, May
2018.

[17] Geographic Address Management API REST Specification, TM Forum Specification, TMF673, Release
16.0.1, May 2016.

[18] Decentralized Identifiers (DIDs) v1.0. Drummond Reed; Manu Sporny; Markus Sabadello; Dave
Longley; Christopher Allen. W3C. 28 July 2020. W3C Working Draft. Available online:
https://www.w3.org/TR/did-core/

[19] Sporny, M., Longleyy, D., and Chadwick, D. Verifiable Credentials Data Model 1.0. Expressing verifiable
information on the Web. W3C Recommendation 19 November 2019. Available online:
https://www.w3.org/TR/vc-data-model/

[20] Sovrin Fundation. Available online: https://sovrin.org/

[21] Hyperledger URSA. Available online: https://www.hyperledger.org/use/ursa

[22] Hyperledger Indy. Available online: https://www.hyperledger.org/use/hyperledger-indy

[23] Hyperledger Aries. Available online: https://www.hyperledger.org/use/aries

https://5gtango.eu/blog/56-the-importance-of-service-level-agreements-in-the-5g-era.html
https://www.w3.org/TR/vc-data-model/
https://sovrin.org/
https://www.hyperledger.org/use/ursa
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/aries

Page 151 of 152

[24] Decentralized Identity Foundation. Available online: https://identity.foundation/

[25] Universal Resolver. Available online: https://github.com/decentralized-identity/universal-resolver

[26] Universal Registrar. Available online: https://github.com/decentralized-identity/universal-registrar

[27] Identity Hub. Available online: https://identity.foundation/working-groups/storage-compute.html

[28] DID Communication. Available online: https://identity.foundation/working-groups/did-comm.html

[29] Trust Over IP Foundation. Available online: https://trustoverip.org/

[30] Cordentity. Corda Marketplace. Available online: https://marketplace.r3.com/solutions/cordentity

[31] SOFIE (Secure Open Federation for Internet Everywhere). Available online: https://www.sofie-
iot.eu/en

[32] PyDentity Project. Available online: https://github.com/OpenMined/PyDentity

[33] TrustID Module. Available online: https://trustos.readthedocs.io/en/latest/id.html

[34] Hyperledger Aries Cloud Agent Python (ACA-Py) . Available online:
https://github.com/hyperledger/aries-cloudagent-python

[35] Protocol on-the-fly Concept. Available online: https://rethink-
project.github.io/specs/concepts/protofly/

[36] reTHINK (Trustful hyper-linked entities in dynamic networks). Available online: https://rethink-
project.eu/

[37] Hyperledger ARIES RFC 0160 connection protocol. Available online:
https://github.com/hyperledger/aries-rfcs/tree/master/features/0160-connection-protocol

[38] Hyperledger ARIES RFC 0453 issue credential protocol. Available online:
https://github.com/hyperledger/aries-rfcs/tree/master/features/0453-issue-credential-v2

[39] Hyperledger ARIES RFC 0454 present proof protocol. Available online:
https://github.com/hyperledger/aries-rfcs/tree/master/features/0454-present-proof-v2

[40] R3 Corda. Available Online: https://www.corda.net/

[41] Quorum. Available Online https://consensys.net/quorum/

[42] Hyperledger Fabric. Available Online https://www.hyperledger.org/use/fabric

[43] Accord Project. Available Online: https://accordproject.org/

[44] Agreement Management API REST Specification, TM Forum Specification, TMF651, Release 19.0, July
2019.

[45] SLA Management API REST Specification, TM Forum Specification, TMF623, Release 14.5.1, June 2015.

https://identity.foundation/
https://github.com/decentralized-identity/universal-resolver
https://github.com/decentralized-identity/universal-registrar
https://identity.foundation/working-groups/storage-compute.html
https://identity.foundation/working-groups/did-comm.html
https://trustoverip.org/
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/007/01.01.01_60/gs_ZSM007v010101p.pdf
https://www.sofie-iot.eu/en
https://www.sofie-iot.eu/en
https://github.com/OpenMined/PyDentity
https://trustos.readthedocs.io/en/latest/id.html
https://github.com/hyperledger/aries-cloudagent-python
https://rethink-project.github.io/specs/concepts/protofly/
https://rethink-project.github.io/specs/concepts/protofly/
https://rethink-project.eu/
https://rethink-project.eu/
https://github.com/hyperledger/aries-rfcs/tree/master/features/0160-connection-protocol
https://github.com/hyperledger/aries-rfcs/tree/master/features/0453-issue-credential-v2
https://github.com/hyperledger/aries-rfcs/tree/master/features/0454-present-proof-v2
https://www.corda.net/
https://consensys.net/quorum/
https://www.hyperledger.org/use/fabric
https://accordproject.org/

Page 152 of 152

10 Abbreviations

AIOps Artificial Intelligence for IT operations

CNF Cloud Native Function

DID Distributed Identifier

DIF Decentralised Identity Foundation

DLT Distributed Ledger Technology

DPKI Decentralised Public Key Infrastructure

EC European Commission

FaaS Function as a Service

ISSM Intelligent Slice and Service Manager

K8s Kubernetes

LCM LifeCycle Management

MANO Management and Orchestration

MEC Mobile Edge Computing

NBI Northbound Interface

NFV Networks Function Virtualization

NFVI Networks Function Virtualization Infrastructure

NFVO Networks Function Virtualization Orchestrator

NPM Node Package Manager

NS Network Service or Network Slice depending on the context

NSM Network Service Mesh

POP Product-Offering Price

RAN Radio Access Network

SC Smart Contract

SDO Standards Development Organization

SM Service Mesh

UTXO Unspent Transaction Output

VC Verifiable Claim

VDU Virtual Deployment Unit

VNF Virtual Network Function

VNFM Virtual Network Function Manager

W3C World Wide Web Consortium

WG Working group

WP Work Package

ZSM Zero Touch Service Management

<END OF DOCUMENT>

